Expectation value in momentum space

Click For Summary

Homework Help Overview

The discussion revolves around proving properties of expectation values in momentum space, specifically relating to the Fourier transform of wave functions and the application of operators in quantum mechanics.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the relationship between wave functions in position and momentum space, questioning whether the proof for expectation values can be generalized to any operator. There is mention of the commutation of operators with exponential functions.

Discussion Status

Some participants have provided guidance on the commutation of operators and suggested exploring the proof further. There is an acknowledgment of the challenges in sharing work due to formatting issues, and participants are considering how to approach the proof of operator commutation.

Contextual Notes

Participants note difficulties in sharing their work due to technical issues with formatting equations, which may affect the clarity of the discussion.

VVS2000
Messages
150
Reaction score
17
Homework Statement
The problem was to show that given φ(p), and wave function Ψ(r), prove that <p>= ∫φ(p)*pφ(p)dp and <p²>=∫φ(p)*p²φ(p)dp
Relevant Equations
Ψ(r)=1/2πℏ ∫ φ(p)exp(ipr/ℏ)dp
<p>=∫Ψ(r)*pΨ(r)dr
so from Fourier transform we know that
Ψ(r)=1/2πℏ∫φ(p)exp(ipr/ℏ)dp
I proved that <p>= ∫φ(p)*pφ(p)dp from <p>=∫Ψ(r)*pΨ(r)dr
so will the same hold any operator??
 
Physics news on Phys.org
VVS2000 said:
Homework Statement:: The problem was to show that given φ(p), and wave function Ψ(r), prove that <p>= ∫φ(p)*pφ(p)dp and <p²>=∫φ(p)*p²φ(p)dp
Relevant Equations:: Ψ(r)=1/2πℏ ∫ φ(p)exp(ipr/ℏ)dp
<p>=∫Ψ(r)*pΨ(r)dr

so from Fourier transform we know that
Ψ(r)=1/2πℏ∫φ(p)exp(ipr/ℏ)dp
I proved that <p>= ∫φ(p)*pφ(p)dp from <p>=∫Ψ(r)*pΨ(r)dr
so will the same hold any operator??
Without seeing your work I can't really say if what you did would hold. But, yes, we can do this with any operator O(p). The usual method involves noting that ##e^{\pm ipr/ \hbar}## commutes with p. Any operator O(p) will commute with the exponentials, so just put that into your proof instead of p. (You may need to prove that you can do this. Think of how you prove that the exponential operator ##e^{\pm ipr/ \hbar}## commutes with p.)

-Dan
 
  • Like
Likes   Reactions: VVS2000
topsquark said:
Without seeing your work I can't really say if what you did would hold. But, yes, we can do this with any operator O(p). The usual method involves noting that ##e^{\pm ipr/ \hbar}## commutes with p. Any operator O(p) will commute with the exponentials, so just put that into your proof instead of p. (You may need to prove that you can do this. Think of how you prove that the exponential operator ##e^{\pm ipr/ \hbar}## commutes with p.)

-Dan
yeah, thing is I am still learning Latex to use it to type equations here, so It would be difficult to get in the whole proof. I tried uploading the pic of my work but there was some issue
yeah I think will try to prove why O(p) will commute
 
VVS2000 said:
yeah, thing is I am still learning Latex to use it to type equations here, so It would be difficult to get in the whole proof. I tried uploading the pic of my work but there was some issue
yeah I think will try to prove why O(p) will commute
Hint: Think Maclaurin series.

-Dan
 
  • Like
Likes   Reactions: VVS2000

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K