Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Expectation value with imaginary component?

  1. Feb 18, 2017 #1
    Hello, I'm a beginner at quantum mechanics. I'm working through problems of the textbook A Modern Approach to Quantum Mechanics without a professor since I am not going to college right now, so I need a brief bit of help on problem 1.10. Everything else I have gotten right so far, but I am having trouble understanding how to apply the examples provided in order to attain an observation probability that does not have an imaginary component.

    To explain, the state:

    ##|phi> = 1/2 * | +z > + i*sqrt(3)/2 * | -z >##

    And we wish to know ##<S_x>##, where ##|+x > = 1/sqrt(2)*|+z> + 1/sqrt(2)*|-z>##

    Since there is not an imaginary component for |+x>, I don't see how I can calculate ##<+x | phi >##; there is not an i to negate for ##|+x>## to acquire the complex conjugate <+x|. Perhaps I don't understand the complex conjugation part well enough - equal magnitude and opposite sign, yes?

    So, then when I'm calculating ##<+x | phi >## according to the example, I wind up with an expectation value with an imaginary component. Which I don't think is correct.

    Can any body help point out where I have gone wrong?
     
    Last edited: Feb 18, 2017
  2. jcsd
  3. Feb 18, 2017 #2

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Please use the PF LaTeX feature. You can find help on it in the Info section. It makes posts involving math much easier to read.
     
  4. Feb 18, 2017 #3

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    How do you intend to calculate ##\langle S_x \rangle ##?
     
  5. Feb 18, 2017 #4
    @PeroK Well, I was going to calculate the probability of encountering the state X given that it is in state PHI as P, and from that calculate 1 - P to get the probability of encountering state -X given state Phi. From that, I was going to multiply each by h/2 and -h/2 respectively.

    @PeterDonis sorry, I'm new to this site, I'll try and edit my post here shortly.
     
  6. Feb 18, 2017 #5

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Okay, but how are you going to calculate these probabilities?
     
  7. Feb 18, 2017 #6
    Here's what I have: ##<x | \phi > = (1/\sqrt(2)*<z| + 1/\sqrt(2)<-z|)(1/2 * |z> + i*\sqrt(3)/2*|-z>)##

    [Moderator's note: edited for LaTeX formatting.]
     
    Last edited by a moderator: Feb 18, 2017
  8. Feb 18, 2017 #7

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What does ##\langle x+ | \psi \rangle## give you?
     
  9. Feb 18, 2017 #8

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Equal magnitude and opposite sign of the imaginary part. No change to the real part. So if a number is real (zero imaginary part), what would that mean?
     
  10. Feb 18, 2017 #9

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What does ##\langle x \!+ | \psi \rangle## give you?

    Hint: it doesn't give you the probablity of getting ##|x \!+ \rangle##. So, if it's not the probability itself, what does it give you?
     
  11. Feb 18, 2017 #10
    @PeterDonis I asked, but if I am right, then there is no change since there is no imaginary part to negate. In which case, how does the imaginary component cancel out of the amplitude.

    @PeroK I know what ##<x+|phi>## is; that's the amplitude, and you take ##|A|^2## to get a probability value for that amplitude. Knowing what to calculate is not the problem. When I carry out the calculations, I get a imaginary part remaining, and even if I take ##|A|^2##, I still don't get rid of that part.

    The amplitude I get is: ##(1/(sqrt(2)*2) + i*sqrt(3)/(sqrt(2)*2)##
     
  12. Feb 18, 2017 #11

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Okay. The magnitiude of a complex number must be real. In fact:

    ##|a + ib|^2 = a^2 + b^2##

    You don't need complex conjugation, per se.
     
  13. Feb 18, 2017 #12
    So, just going from ##<x|phi>## to ##|<x|phi>|^2## the imaginary component will be eliminated?
     
  14. Feb 18, 2017 #13

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    You may need to revise some complex numbers. The magnitude of a complex number should be clear. I posted above what the magintude of a complex number is. I wouldn't describe that as eliminating the imaginary part, any more than eliminating the real part.
     
  15. Feb 18, 2017 #14
    Ok, so if I did the calculations right using what you've said all the way through, I should get:

    ##
    <x | phi> = (1/sqrt(2)*<z+| + 1/sqrt(2)*<-z|)(1/2*|z+> + i*sqrt(3)/2*|-z>) = (1/(2*sqrt(2)) + i*sqrt(3))##

    And so
    ##
    |<x | phi>|^2 = (1/8 + 3/8) = 1/2
    ##
     
  16. Feb 18, 2017 #15

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes, that's it.
     
  17. Feb 18, 2017 #16

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Yes, because the amplitude you are dealing with is real. And when you take the complex conjugate, what happens to the real part? And what does that imply about the complex conjugate of a real number?
     
  18. Feb 18, 2017 #17
    The real part is unaffected. And that the complex conjugate of a real number is itself unaffected.

    Yeah, so this is the first time that I have started exercising this knowledge, so although I've read it several times, I haven't had to apply it.
     
  19. Feb 18, 2017 #18

    ftr

    User Avatar

    this looks incorrect
     
  20. Feb 18, 2017 #19

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Why?
     
  21. Feb 18, 2017 #20

    ftr

    User Avatar

    (ib)^2= - b^2
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Expectation value with imaginary component?
  1. Expectation Values (Replies: 1)

  2. Expectation value (Replies: 2)

  3. Expectation values (Replies: 1)

Loading...