compliant
- 43
- 0
Homework Statement
Given Y1 and Y2 are integer values, where 0\leqY1\leq3, 0\leqY2\leq3, 1\leqY1+Y2\leq3
p(Y1, Y2) = \frac{{4 \choose y_1}{3 \choose y_2}{2 \choose {3-y_1-y_2}}}{{9 \choose 3}}
Find E(Y1+Y2) and V(Y1+Y2)
Homework Equations
E(Y1+Y2) = E1(Y1)+E2(Y2)
E1(Y1) = \int_{-{\infty}}^{\infty} y_1 f(y_1) dy_1
But that's for continuous variables, so I have no idea how to deal with discrete. Some guy tried explaining it to me, but it was just so unclear I didn't understand any of it.
Required use of these theorems:
Given U1 = \sum_{i=1}^n a_i*Y_i
E(U1) = \sum_{i=1}^n a_i*E_i (Y_i)
V(U1) = {\sum_{i=1}^n {a_i}^2*E_i (Y_i)}+2{\sum{\sum_{1{\leq{i}}<j{\leq{n}}} {a_i}^2*E_i (Y_i)}}
The Attempt at a Solution
Well, first I did it the slow counting way involving counting,
P(Y1+Y2=1)
= \frac{{4 \choose 0}{3 \choose 1}{2 \choose {2}}}{{9 \choose 3}} + \frac{{4 \choose 1}{3 \choose 0}{2 \choose {2}}}{{9 \choose 3}}
= \frac {3+4}{84}
= \frac {7}{84}
P(Y1+Y2=2)
= \frac{{4 \choose 0}{3 \choose 2}{2 \choose {1}}}{{9 \choose 3}} + \frac{{4 \choose 1}{3 \choose 1}{2 \choose {1}}}{{9 \choose 3}} + \frac{{4 \choose 2}{3 \choose 0}{2 \choose {1}}}{{9 \choose 3}}
= \frac {3(2)+4(3)(2)+6(2)}{84}
= \frac {42}{84}
P(Y1+Y2=3)
= \frac{{4 \choose 0}{3 \choose 3}{2 \choose {0}}}{{9 \choose 3}} + \frac{{4 \choose 1}{3 \choose 2}{2 \choose {0}}}{{9 \choose 3}} + \frac{{4 \choose 2}{3 \choose 1}{2 \choose {0}}}{{9 \choose 3}} + \frac{{4 \choose 3}{3 \choose 0}{2 \choose {0}}}{{9 \choose 3}}
= \frac {1+4(3)+6(3)+4)}{84}
= \frac {35}{84}
E(Y1+Y2) = P(Y1+Y2=1)+2P(Y1+Y2=2)+3P(Y1+Y2=3)
= {(1)}{\frac {7}{84}}+{(2)}{\frac {42}{84}}+{(3)}{\frac {35}{84}}
= \frac {196}{84}
= \frac {7}{3}
But I'm supposed to be using the formula I listed above. So I have no idea how to deal with that.