Explain the Schrodinger equation

AI Thread Summary
The discussion focuses on the request for a simple explanation of the Schrödinger equation in quantum mechanics, specifically regarding its components like the Laplace operator and wave function. Participants emphasize the importance of demonstrating prior knowledge and effort in understanding the topic before receiving help. The equation itself describes how the quantum state of a physical system changes over time, with the Hamiltonian operator representing the total energy of the system. There is a clear need for foundational knowledge in calculus and differential equations to fully grasp the concepts involved. Overall, the conversation highlights the complexity of the Schrödinger equation and the prerequisite understanding required for meaningful assistance.
Huzaifa
Messages
40
Reaction score
2
Homework Statement
Please explain in simple words, the meaning of the Schrodinger wave equation in the quantum mechanics model of atom.
Relevant Equations
$$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0$$
Please explain in simple words, the meaning of the Schrodinger wave equation in the quantum mechanics model of atom. $$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0$$
 
Physics news on Phys.org
Welcome to PF. :smile:

We require that you show some effort on your schoolwork questions before we can offer tutorial help. What reading have you been doing about SE? What have you learned so far? What class is this for?

https://en.wikipedia.org/wiki/Schrödinger_equation
 
$$
\nabla ^{2}\psi +\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0
$$
$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-U) \psi=0
$$

I am not able to understand the Laplace operator and the wave function. I do not have the knowledge of
differential equations. In the time-independent Schrödinger equation for Hydrogen atom, HΨ = EΨ, where H is Hamiltonian operator.

Please explain Laplace operator Hamiltonian operator and wave function without differential equations. Thank you.
 
You haven't answered the questions asked of you by @berkeman in Post#2 yet! And you haven't told us what you do understand - for example if you are familiar with basic calculus.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top