Explaining a Physics Formula in Non-Physics Terms: Answer B

AI Thread Summary
The discussion centers on understanding the physics formula "sinΘR = 1.22 λ/d," specifically regarding its application and the concept of resolving power. Participants seek clarification on how the dish's diameter influences resolving power and the meanings of the symbols in the formula. There is a suggestion that asking for explanations in simpler terms may not be effective in a physics-focused forum. Ultimately, the original poster indicates they have resolved their questions. The conversation highlights the importance of engaging with the material and seeking deeper understanding in technical discussions.
hidemi
Messages
206
Reaction score
36
Homework Statement
If the diameter of a radar dish is doubled, what happens to its resolving power assuming that all other factors remain unchanged?

A) The resolving power quadruples.
B) The resolving power doubles.
C) The resolving power is reduced to 1/2 of its original value.
D) The resolving power is reduced to 1/4 of its original value.
E) The resolving power does not change unless the focal length changes.

The answer is B.
Relevant Equations
sinΘR = 1.22 λ/d
According to the equation, the answer is B.
Since the lecture didn't cover much about it, can someone explain this formula in a less physics way? Thanks.
 
Physics news on Phys.org
What have you done so far? E.g what have you found out ?
What is meant by resolving power?
Why will the dish’s diameter affect the resolving power?
What do the symbols in the formula “sinΘR = 1.22 λ/d” mean?

Edit. And asking for an explanation 'in a less physics way' may not be the best tactics in a forum dedicated to physics!
 
Last edited:
Steve4Physics said:
What have you done so far? E.g what have you found out ?
What is meant by resolving power?
Why will the dish’s diameter affect the resolving power?
What do the symbols in the formula “sinΘR = 1.22 λ/d” mean?

Edit. And asking for an explanation 'in a less physics way' may not be the best tactics in a forum dedicated to physics!
Thanks for your hints. I have solved it.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top