I Explicit non-local form for the vector potential?

Click For Summary
The discussion centers on the necessity of introducing an explicitly non-local vector potential in light-matter interaction calculations. The original poster expresses surprise at needing this form and questions whether their approach is correct, given that literature typically considers only local vector potentials. A response clarifies that the matrix element of the vector potential can be expressed as a delta function, which effectively removes non-locality. The conversation also touches on the implications of using this approach when the vector potential is not a simple function, emphasizing that if the form of the vector potential is unknown, meaningful analysis becomes impossible. Overall, the dialogue highlights the complexities of vector potential representation in quantum mechanics.
Amentia
Messages
108
Reaction score
5
Hello everyone,

I was looking at the light matter interaction Hamiltonian and I worked out a simple calculation where I was surprised to see that I had to introduce an explicitly non-local vector potential if I want to go further:

$$\langle\psi| \boldsymbol{\hat{A}}(t)\cdot\boldsymbol{\hat{p}}|\phi\rangle = \int\int d^{3}rd^{3}r' \langle\psi|\boldsymbol{r'}\rangle\langle\boldsymbol{r'}|\boldsymbol{\hat{A}}(t)|\boldsymbol{r}\rangle\cdot\langle\boldsymbol{r}|\boldsymbol{\hat{p}}|\phi\rangle$$

Giving:

$$\langle\psi|\boldsymbol{\hat{A}}(t)\cdot\boldsymbol{\hat{p}}|\phi\rangle = \int\int d^{3}rd^{3}r' \psi^{*}(\boldsymbol{r'})\langle \boldsymbol{r'}|\boldsymbol{\hat{A}}(t)|\boldsymbol{r}\rangle\cdot\left(\frac{\hbar}{i}\right)\boldsymbol{\nabla}_{\boldsymbol{r}}\phi(\boldsymbol{r})$$

I would rewrite ##\langle \boldsymbol{r'}|\boldsymbol{\hat{A}}(t)|\boldsymbol{r}\rangle## as ##\boldsymbol{\hat{A}}(\boldsymbol{r'},\boldsymbol{r},t)##. But only ##\boldsymbol{\hat{A}}(\boldsymbol{r},t)## has been considered as a correct form for the vector potential in the literature (usually the dependence with r is a plane-wave). Perhaps I have done something wrong in my calculation although it looks simple? Or is there something in the physics related to vector potentials that I have been missing until now?

Thank you for any thoughts about that!
 
Last edited:
Physics news on Phys.org
Amentia said:
I would rewrite ##\langle r'|\boldsymbol{\hat{A}}(t)|r\rangle## as ##\boldsymbol{\hat{A}}(\boldsymbol{r'},\boldsymbol{r},t)##.
It's actually
$$\langle r'|\boldsymbol{\hat{A}}(t)|r\rangle=\boldsymbol{A}(\boldsymbol{r'},\boldsymbol{r},t)$$
i.e. there is no hat on the right-hand side because the matrix element of an operator is a c-number, not an operator. Furthermore, this c-number function is of the form
$$\boldsymbol{A}(\boldsymbol{r'},\boldsymbol{r},t)=\delta(\boldsymbol{r'}-\boldsymbol{r}) \boldsymbol{A}(\boldsymbol{r},t)$$
which removes non-locality. All this is nothing but a simple generalization of
$$\langle r'|\boldsymbol{\hat{r}}|r\rangle=\delta(\boldsymbol{r'}-\boldsymbol{r}) \boldsymbol{r}$$
 
  • Like
Likes vanhees71 and Amentia
Thank you, this is what I was looking for because I was trying to see how a delta function could be introduced here. However, is it always correct in general? If the dependence of A was not a plane-wave or a simple analytical function of r, could we still use this trick? It could happen that the exact form of A is not known in some complex medium, a nanosystem with position-varying dielectric constant, etc.

Edit: Also A is still an operator in quantum mechanics here... I do not like hybrid notations but we usually find it written both with the dependence on r and the creation and annihilation operators. I assume the initial A is supposed to be some kind of tensor product of operators acting on two different vector spaces.
 
Last edited:
Amentia said:
Thank you, this is what I was looking for because I was trying to see how a delta function could be introduced here. However, is it always correct in general? If the dependence of A was not a plane-wave or a simple analytical function of r, could we still use this trick? It could happen that the exact form of A is not known in some complex medium, a nanosystem with position-varying dielectric constant, etc.
Think of A as
$$\hat{\bf A}(t)={\bf A}(\hat{\bf r},t)$$
where ##{\bf A}({\bf r},t)## is a known function. It doesn't need to be simple or analytic, it only needs to be known. If ##{\bf A}({\bf r},t)## is unknown, then you cannot analyze the system. It's like studying Schrodinger equation with unknown potential ##V(x)##; when it's unknown then you cannot say much about the system.
 
  • Like
Likes vanhees71 and Amentia
Thank you, I think it is a reasonable assumption to make in physics and that completely solves my question!
 
  • Like
Likes Demystifier
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads

Replies
2
Views
950
Replies
4
Views
1K
Replies
2
Views
1K
Replies
1
Views
689
Replies
13
Views
3K
Replies
2
Views
2K
Replies
0
Views
344