- #1

- 3,073

- 3

## Main Question or Discussion Point

Let Euler's zeta function be given by

[tex]

\sum_{n=1}^{\infty}1/n^s

[/tex]

Is there an exponent L which limits the finiteness of

[tex]

(\sum_{n=1}^{\infty}1/n^s)^L

[/tex]

for the case where s=1?

[tex]

\sum_{n=1}^{\infty}1/n^s

[/tex]

Is there an exponent L which limits the finiteness of

[tex]

(\sum_{n=1}^{\infty}1/n^s)^L

[/tex]

for the case where s=1?