I Expressing Vectors of Dual Basis w/Metric Tensor

Click For Summary
The discussion revolves around the mathematical justification for expressing dual basis vectors in terms of the original basis vectors using the dual metric tensor. It clarifies that the expressions ##\mathbf{e}^i=g^{ij}\mathbf{e}_j## and ##\mathbf{e}_i=g_{ij}\mathbf{e}^j## are incorrect because they equate dual vectors with regular vectors, which belong to different spaces. The concept of metric duality is introduced, highlighting the relationship between vectors and their duals through a bilinear and non-degenerate metric. The conversation also touches on the identification of vectors and duals in spaces with a fundamental form, which can make these expressions valid under specific conditions. Overall, the importance of notation and the context of metric spaces is emphasized in understanding these relationships.
AndersF
Messages
27
Reaction score
4
TL;DR
Why can we express the dual basis vectors in terms of the original basis vectors through the dual metric tensor in this way? ##\mathbf{e}^i=g^{ij}\mathbf{e}_j##
I'm trying to understand why it is possible to express vectors ##\mathbf{e}^i## of the dual basis in terms of the vectors ##\mathbf{e}_j## of the original basis through the dual metric tensor ##g^{ij}##, and vice versa, in these ways:

##\mathbf{e}^i=g^{ij}\mathbf{e}_j##

##\mathbf{e}_i=g_{ij}\mathbf{e}^j##

What would be the mathematical justification for these expressions?
 
Physics news on Phys.org
none, because they're not right :smile:
 
ergospherical said:
none, because they're not right :smile:
Oh, why not? They are written like this in my textbook
 
  • Like
Likes vanhees71
well you can tell immediately
AndersF said:
##\mathbf{e}^i=g^{ij}\mathbf{e}_j##
##\mathbf{e}_i=g_{ij}\mathbf{e}^j##
cannot be true, because one side is a dual vector whilst the other side is a vector

to some basis ##\{ \boldsymbol{e}_{i} \}## of ##V## is associated a dual basis ##\{ \boldsymbol{e}^i \}## of ##V^*## defined by ##\langle \boldsymbol{e}^i, \boldsymbol{e}_j \rangle = \delta^i_j##

besides there is also metric duality, which is to say that to any ##\boldsymbol{v} \in V## there is a ##f_{\boldsymbol{g}}(\boldsymbol{v}) := \boldsymbol{\hat{v}} \in V^*## such that ##\langle \hat{\boldsymbol{v}}, \boldsymbol{u} \rangle = \boldsymbol{g}(\boldsymbol{v}, \boldsymbol{u})## for any ##\boldsymbol{u} \in V##. Then $$\hat{v}_i := \langle \hat{\boldsymbol{v}}, \boldsymbol{e}_i \rangle = \boldsymbol{g}(v^j \boldsymbol{e}_j, \boldsymbol{e}_i) = g_{ij} v^j$$which referred to as lowering the index ##j##. (Because ##\boldsymbol{g}## is bilinear and non-degenerate the function ##f_{\mathbf{g}}## is injective and further because ##V## and ##V^*## are both of equal finite dimension, ##f_{\boldsymbol{g}}## is indeed a bijective function.)

n.b. also the metric duals ##\hat{\boldsymbol{e}}_i = f_{\boldsymbol{g}}(\boldsymbol{e}_i)## of the basis elements of ##V## do not coincide with the dual basis elements ##\boldsymbol{e}^i## which is clear because ##\langle \boldsymbol{e}^i, \boldsymbol{e}_j \rangle = \delta^i_j## whilst ##\langle \hat{\boldsymbol{e}}_i, \boldsymbol{e}_j \rangle = \boldsymbol{g}(\boldsymbol{e}_i, \boldsymbol{e}_j) = g_{ij}##
 
Last edited:
  • Like
Likes AndersF
Well, yes, but usually in spaces with a fundamental form you identify the vectors and the dual vectors through the canonical mapping ##V \rightarrow V^*## via ##\vec{v} \mapsto L_{\vec{v}}##, where
$$L_{\vec{v}}(\vec{w})=g(\vec{v},\vec{w}).$$
In your notation ##L_{\vec{v}}=\hat{\vec{v}}##.

Then of course ##\hat{e}^i=g^{ij} \hat{e}_j=e^i##. Usually you don't distinguish between ##\hat{e}_i## and ##e_i## anymore. It's somewhat sloppy notation though.
 
  • Like
Likes cianfa72, Orodruin and AndersF
Okay, thanks, I see that it was the notation that confused me.
 
yea but what I mean is that you can't raise and lower the indices attached to the basis vectors with the metric like this "##\boldsymbol{e}^i = g^{ij} \boldsymbol{e}_j##", because then you are equating objects which live in different spaces 😥
 
  • Like
Likes AndersF
Well, in principle yes. But if you identify the vectors with their duals via the fundamental form in a pseudo-Euclidean (or Euclidean) vector space as explained by the above introduced corresponding isomorphism it makes sense. E.g., then you get from the above formula
$$\boldsymbol{e}^i(\boldsymbol{e}_k)=g^{ij} \boldsymbol{e}_j(\boldsymbol{e}_k)=g^{ij} g_{jk}=\delta_k^i,$$
as it must be.

BTW the ##g^{ij}## are the contravariant components of the pseudo-metric not the pseudo-metric itself. Of course physicists use simply "metric" for both the pseudo-metric and its (various) components all the time. This confused me a lot when I started to learn the subject, but one gets used to it.
 
  • Like
Likes AndersF