- #1
71GA
- 208
- 0
Homework Statement
We have a 2 unstable particles moving in the ##\scriptsize xy## frame. The leading one has speed ##\scriptsize u_2=0.99c## while the other has speed ##\scriptsize u_1 < u_2##. When the distance between them is ##\scriptsize 100m## in the ##\scriptsize xy## frame they both seem to explode at the same time in ##\scriptsize xy##.
How much time does it pass between explosions in frame of the faster particle. Which particle does explode first in this system?
Homework Equations
- Lorentz transformations (i think only for standard configuration)
- time dilation
- length contraction
The Attempt at a Solution
First i draw the image:
First i calculate ##\scriptsize \gamma_2##:
\begin{align}
\gamma_2 = \frac{1}{\sqrt{1- 0.99^2}} = 7.09
\end{align}
I know is that if two events happen at the same time in some system that system measures proper length ##\scriptsize \ell##. So i can conclude that ##\Delta x \equiv \ell##. With respect to this i can calculate the distance ##\scriptsize \Delta x_2' = \tfrac{1}{\gamma} \Delta x = \tfrac{1}{50.25}100m \approx 1.99m##.
Question 1: I think that the calculated distance ##\scriptsize \Delta x'_2## is the distance between the events in frame ##\scriptsize x'_2,y'_2## if particle in system ##\scriptsize x'_1,y'_1## would be moving with speed ##\scriptsize u_2=u_1##. I am not sure about my interpretation and need help.
Now i try to continue and use the fact that events happen at the same time in ##\scriptsize xy## frame ##\scriptsize \longrightarrow \Delta t = 0##. I know i have to use this in Lorentz transformations which i have to write 2 times (first time to connect the frame ##\scriptsize xy## with ##\scriptsize x'_1y'_1## and second time to connect frame ##\scriptsize xy## with ##\scriptsize x'_2y'_2## - i use ##\scriptsize \gamma_1, u_1## & ##\scriptsize \gamma_2,u_2## respectively). Let's do this:
Connecting the ##\scriptsize xy## with ##\scriptsize x'_1y'_1##:
\begin{align}
\Delta x &= \gamma_1 \left(\Delta x'_1 + u_1 \Delta t_1' \right) & \Delta t &= \gamma_1 \left(\Delta t_1' + \Delta x'_1 \tfrac{u_1}{c^2}\right)\\
\Delta x_1' &= \gamma_1 \left(\Delta x - u_1 \Delta t \right) & \Delta t_1' &= \gamma_1 \left(\Delta t - \Delta x \tfrac{u_1}{c^2}\right)\\
\end{align}
Connecting the ##\scriptsize xy## with ##\scriptsize x'_2y'_2##:
\begin{align}
\Delta x &= \gamma_2 \left(\Delta x'_2 + u_2 \Delta t_2' \right) & \Delta t &= \gamma_2 \left(\Delta t_2' + \Delta x'_2 \tfrac{u_2}{c^2}\right)\\
\Delta x_2' &= \gamma_2 \left(\Delta x - u_2 \Delta t \right) & \Delta t_2' &= \gamma_2 \left(\Delta t - \Delta x \tfrac{u_2}{c^2}\right)\\
\end{align}
If i apply the ##\boxed{\Delta t = 0}## i get some speciffic Lorentz transformations (which i marked A,B,C... for easier comunication):
Connecting the ##\scriptsize xy## with ##\scriptsize x'_1y'_1##:
\begin{align}
&(A) & \Delta x &= \gamma_1 \left(\Delta x'_1 + u_1 \Delta t_1' \right) & &(B) & 0 &= \gamma_1 \left(\Delta t_1' + \Delta x'_1 \tfrac{u_1}{c^2}\right)\\
&(C) & \Delta x_1' &= \gamma_1 \Delta x & &(D) & \Delta t_1' &= - \gamma_1 \Delta x \tfrac{u_1}{c^2}\\
\end{align}
Connecting the ##\scriptsize xy## with ##\scriptsize x'_2y'_2##:
\begin{align}
&(E) & \Delta x &= \gamma_2 \left(\Delta x'_2 + u_2 \Delta t_2' \right) & &(F) & 0 &= \gamma_2 \left(\Delta t_2' + \Delta x'_2 \tfrac{u_2}{c^2}\right)\\
&(G) & \Delta x_2' &= \gamma_2 \Delta x & &(H) & \Delta t_2' &= - \gamma_2 \Delta x \tfrac{u_2}{c^2}\\
\end{align}
Question 2: I noticed that (C) and (G) say that ##\scriptsize \Delta x'_1## and ##\scriptsize \Delta x'_2## will be larger than ##\scriptsize \Delta x##. I don't understand this yet and need some help here.
This is what i ve been able to do so far. I would appreciate if anyone would help me to finish i would be gratefull :)
Last edited by a moderator: