MHB F(x) coincides with its inverse function

Click For Summary
For the function f(x) = (ax + b) / (cx + d) to coincide with its inverse, certain conditions on the coefficients a, b, c, and d must be met. The analysis shows that f(f(x)) must equal x, leading to the equation (a^2 + bc)x + (ab + bd) = (ac + cd)x^2 + (bc + d^2)x. This results in a quadratic equation that indicates either a + d = 0 or both b and c = 0, along with a = d. The derived conditions ensure that the function and its inverse are identical. Thus, the necessary and sufficient conditions for f(x) to coincide with its inverse are established.
alexmahone
Messages
303
Reaction score
0
Suppose that $\displaystyle f(x)=\frac{ax+b}{cx+d}$. What conditions on $\displaystyle a,\ b,\ c,\ d$ are necessary and sufficient in order that $\displaystyle f(x)$ coincide with its inverse function.

My attempt:

$\displaystyle f(f(x))=\frac{a\left(\frac{ax+b}{cx+d}\right)+b}{c\left(\frac{ax+b}{cx+d}\right)+d}=\frac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}$

$\displaystyle f(x)=f^{-1}(x)$

$\displaystyle \implies f(f(x))=x$

$\displaystyle \implies\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}=x$

$\displaystyle \implies(a^2+bc)x+ab+bd=(ac+cd)x^2+(bc+d^2)x$

$\displaystyle \implies c(a+d)x^2+(d^2-a^2)x-b(a+d)=0$

$\displaystyle \implies (a+d)[cx^2+(d-a)x-b]=0$

$\displaystyle a+d=0$ or $\displaystyle b=c=0$, $\displaystyle a=d$

---------------------------------------------------------------------------

Is that correct?
 
Last edited:
Physics news on Phys.org
Alexmahone said:
Suppose that $\displaystyle f(x)=\frac{ax+b}{cx+d}$. What conditions on $\displaystyle a,\ b,\ c,\ d$ are necessary and sufficient in order that $\displaystyle f(x)$ coincide with its inverse function.

My attempt:

$\displaystyle f(f(x))=\frac{a\left(\frac{ax+b}{cx+d}\right)+b}{c\left(\frac{ax+b}{cx+d}\right)+d}=\frac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}$

$\displaystyle f(x)=f^{-1}(x)$

$\displaystyle \implies f(f(x))=x$

$\displaystyle \implies\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}=x$

$\displaystyle \implies(a^2+bc)x+ab+bd=(ac+cd)x^2+(bc+d^2)x$

$\displaystyle \implies c(a+d)x^2+(d^2-a^2)x-b(a+d)=0$

$\displaystyle \implies (a+d)[cx^2+(d-a)x-b]=0$

$\displaystyle a+d=0$ or $\displaystyle b=c=0$, $\displaystyle a=d$

---------------------------------------------------------------------------

Is that correct? <--- yes

I've compared the co-efficients at:

$ \displaystyle f(x)=\frac{ax+b}{cx+d}$ ... and... $\displaystyle f^{-1}(x)=\frac{-dx+b}{cx-a} $

which yields your results.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K