F(x) coincides with its inverse function

Click For Summary
SUMMARY

The discussion focuses on determining the conditions under which the function $\displaystyle f(x)=\frac{ax+b}{cx+d}$ coincides with its inverse function. The necessary and sufficient conditions are derived to be either $\displaystyle a+d=0$ or both $\displaystyle b=c=0$ and $\displaystyle a=d$. The analysis involves equating $\displaystyle f(f(x))$ to $\displaystyle x$ and simplifying the resulting expressions. The final conclusion confirms the correctness of these conditions based on coefficient comparison.

PREREQUISITES
  • Understanding of rational functions and their properties
  • Knowledge of inverse functions in algebra
  • Familiarity with polynomial equations and coefficient comparison
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore the properties of rational functions in detail
  • Learn about the derivation and application of inverse functions
  • Study polynomial equations and methods for solving them
  • Investigate the implications of function composition in algebra
USEFUL FOR

Mathematicians, algebra students, and educators interested in the properties of functions and their inverses will benefit from this discussion.

alexmahone
Messages
303
Reaction score
0
Suppose that $\displaystyle f(x)=\frac{ax+b}{cx+d}$. What conditions on $\displaystyle a,\ b,\ c,\ d$ are necessary and sufficient in order that $\displaystyle f(x)$ coincide with its inverse function.

My attempt:

$\displaystyle f(f(x))=\frac{a\left(\frac{ax+b}{cx+d}\right)+b}{c\left(\frac{ax+b}{cx+d}\right)+d}=\frac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}$

$\displaystyle f(x)=f^{-1}(x)$

$\displaystyle \implies f(f(x))=x$

$\displaystyle \implies\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}=x$

$\displaystyle \implies(a^2+bc)x+ab+bd=(ac+cd)x^2+(bc+d^2)x$

$\displaystyle \implies c(a+d)x^2+(d^2-a^2)x-b(a+d)=0$

$\displaystyle \implies (a+d)[cx^2+(d-a)x-b]=0$

$\displaystyle a+d=0$ or $\displaystyle b=c=0$, $\displaystyle a=d$

---------------------------------------------------------------------------

Is that correct?
 
Last edited:
Physics news on Phys.org
Alexmahone said:
Suppose that $\displaystyle f(x)=\frac{ax+b}{cx+d}$. What conditions on $\displaystyle a,\ b,\ c,\ d$ are necessary and sufficient in order that $\displaystyle f(x)$ coincide with its inverse function.

My attempt:

$\displaystyle f(f(x))=\frac{a\left(\frac{ax+b}{cx+d}\right)+b}{c\left(\frac{ax+b}{cx+d}\right)+d}=\frac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}$

$\displaystyle f(x)=f^{-1}(x)$

$\displaystyle \implies f(f(x))=x$

$\displaystyle \implies\frac{(a^2+bc)x+ab+bd}{(ac+cd)x+bc+d^2}=x$

$\displaystyle \implies(a^2+bc)x+ab+bd=(ac+cd)x^2+(bc+d^2)x$

$\displaystyle \implies c(a+d)x^2+(d^2-a^2)x-b(a+d)=0$

$\displaystyle \implies (a+d)[cx^2+(d-a)x-b]=0$

$\displaystyle a+d=0$ or $\displaystyle b=c=0$, $\displaystyle a=d$

---------------------------------------------------------------------------

Is that correct? <--- yes

I've compared the co-efficients at:

$ \displaystyle f(x)=\frac{ax+b}{cx+d}$ ... and... $\displaystyle f^{-1}(x)=\frac{-dx+b}{cx-a} $

which yields your results.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K