bjacoby
- 133
- 1
Per Oni said:DC stands for Direct Current?
During the time you slide the magnet across the short with the centre divider switch open, there will still be a voltage generated, however with a very much reduced current. The value of this voltage is still U=BLV, where L is the length of the short. In this case the voltage will exist across the open contacts of the switch. Therefore an electric field of E=U/d will be generated, where d is the distance between the contacts. The switch acts now as a (small) capacitor.
No not at all.
The rocking plates are at all times in good electrical contact with each other. As I said before: eddy currents are created in the short circuits in the rocking plates, which prevent the meter from registering the proper value, exactly what happened in your earlier example.
The 2 rocking plates are in fact 2 sectors of circles. Imagine completing the full circles. This way you get 2 homopolar generator disks which are in electrical contact, each spinning in the opposite direction. Now install an uniform magnetic field perpendicular to the disks. Opposite spinning results with one disk producing a +ve voltage at the rim and the other a +ve voltage at its centre.
Will there be an emf generated between the 2 centres?
I used DC in the sense of Direct Current meaning not varying with time. I purposely used the term "DC" as a reminder that even in permanent magnets it is electron CURRENTS that cause the magnetic field.
You are trying too hard to bring practical details into this "thought experiment". Just wire the apparatus a different way! make the center "switch" a simple copper bar that bolts across the other larger rectangle. Make the magnet a compact pole that has little fringing. Now once the link is removed I can slide the magnet to the other end with virtually no induced voltages. The fact that there may be some teeny-tiny voltage induced somewhere is not important in the light of our primary conclusion which is that there has been a HUGE flux change in our first loop with NO (or very little) change on the meter. The Flux rule on the other hand predicts a LARGE change (which is seen in most cases).
To understand the rocking plates. Look at the circuit of the plates as the area we are calculating flux over. The area changes because the contact point between the two plates changes. See Feynman Fig. 17-3. Draw straight lines from the pivots on the two plates to the contact point. See how they form an expanding triangle? That represents a HUGE flux change. So why does the flux rule fail? Suppose if you will that the plates contact not in a single point but in two points that are very closely spaced. Now you have TWO circuits through the plated. As you rock the plates inward the inner circuit breaks and the new outer one makes contact. If we assume that the outer one makes contact BEFORE the inner one breaks we have a situation exactly like our switched loops above. The plates are making micro-steps by switching between the two "circuits". Feynman doesn't bother to explain this in his book but you can see with a bit of thought that it's true.