I Fermi Gas Model: Energetic Degeneration & the Pauli Exclusion Principle

lukka98
Messages
30
Reaction score
1
Potential-functions-used-in-the-Fermi-gas-model-of-the-nucleus-as-well-as-some-model_Q320.jpg

In the fermi gas model, there is assumption that there is a 3D potential well, but there is "energetic degeneration" for each three index "nx, ny, nz".
Now the problem is with that image, if there is degeration, for some level En there may be 10 distinctive state with same energy, so there is 20 proton and 20 neutron for Pauli exclusion in that state, why in the image there are only two particle for each state?

Is because is a 1D potential well, just for simplify?

thanks
 
Physics news on Phys.org
It's a very simplified sketch, and the real potential well is not a cube so treating x,y,z independently isn't working in a real nucleus.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top