My first most obvious attempt was to use the relation ##<\epsilon> = \frac{3}{5}\epsilon_F## and the formula for kinetic energy, but this doesn't give the right answer and I'm frankly not sure why that's the case. My other idea was to use the Fermi statistic ##f(\epsilon)## which in this case...
I know that in a Fermi gas, the two common responses to a lo field are Pauli par. and Landau dia. and the last becomes the H-VA effect
My question is, it is the same treatment in degenerated Fermi Gas?
I am currently working in astromagnetism. My question is, somebody knows if a fermi gas (degenerate electrons) can increase or decrease de total magnetic field due to an influence of an external magnetic field and if somebody have information about that.
I know that an external magnetic field...
Hi,
I am reading "An Introduction of Solid State Physics" from Ibach Lüth and don't understand the integration process.
They write $$\sigma=\frac{e^2}{8\pi^3 \hbar}
\int df_{E}dE \frac{v^2_x(\bf{k})}{v(\bf{k})} \tau(\bf{k}) \delta(E-E_F)
$$
$$
= \int_{E=E_F}^{}df_{E}...
Good evening.
I'm currently studing dense matter and nuclear matter above 10^8 g/cm^3, and i know well how to insert a beta equilibirum condition in a free Fermi gás at T=0.
\sqrt{K^2_{F,n}+m^2_n}=\sqrt{K^2_{F,p}+m^2_p}+\sqrt{K^2_{F,e}+m^2_e}
But how do i insert the same condition of...
Homework Statement
Consider a one-dimensional metal wire with one free electron per atom and an atomic spacing of ##d##. Calculate the Fermi temperature.
Homework Equations
Energy of a particle in a box of length ##L##: ##E_n = \frac{\pi^2 \hbar^2}{2 m L^2} n^2##
1D density of states...
I'm practicing for the Physics GRE, and came across a question that has me stumped.
"In elementary nuclear physics, we learn about the Fermi gas model of the nucleus. The Fermi energy for normal nuclear density (ρ0) is 38.4 MeV. Suppose that the nucleus is compressed, for example in a heavy ion...