JD_PM said:
$$\langle 0|b(\vec p_2) b(\vec p_3) b(\vec k_2) b(\vec k_3) \phi (x) b(\vec k_1) b^{\dagger}(\vec p_1) |0 \rangle$$
Well, in fact you should study
$$\langle 0|b(\vec p_2) b(\vec p_3) \phi(x)\phi(x) \phi (x) \phi(x) b^{\dagger}(\vec p_1) |0 \rangle$$
but yes, the reason is very obvious you can always move an anihilation operator to the right or a creation to the left, so all the possible terms will vanish.
Indeed, it's a good exercise to prove that any expectation value of the form
$$\left< 0\right|\prod_{i=0}^n\prod_{j=1}^{m_i} b^{(i)}(k_{ij})\left|0\right>,\quad
\text{where}\quad b^{(i)}=\begin{cases}b& \text{ for } i = \dot{2}\\ b^{\dagger}& \text{ for } i \neq \dot{2}\end{cases}$$
and where ##n\neq \dot{2}## (if ##n## is even then the expresion is trivial since there are anihilation operators acting on the vacuum state). This is always zero unless
$$\sum_{i=0}^n(-1)^{i}m_i = 0$$
Then the case
$$\langle 0|b(\vec p_2) b(\vec p_3) b^{\dagger}(\vec k_2) b^{\dagger}(\vec k_3) b(\vec k) b(\vec k_1) b^{\dagger}(\vec p_1) |0 \rangle$$
is just given by ##n=3, m_0=2, m_1=2, m_2=2, m_3=1## and therefore ##m_0-m_1+m_2-m_3=1\neq 0## so that expression must be zero, and similarly
$$\langle 0|b(\vec p_2) b(\vec p_3) b^{\dagger}(\vec k_2) b^{\dagger}(\vec k_3) b^{\dagger}(\vec k) b(\vec k_1) b^{\dagger}(\vec p_1) |0 \rangle$$
is the case for ##n=3, m_0=2, m_1=3, m_2=1, m_3=1## so ##m_0-m_1+m_2-m_3=-1## so obviously is also zero.
You can use this formula to prove that all the other terms in the expansion of ##\phi^4## vanish.