1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Fibonacci numbers with negative indices?

  1. Mar 16, 2010 #1
    1. The problem statement, all variables and given/known data
    Let the Fibonacci sequence Fn be defined by its recurrence relation (1) Fn=F(n-1)+F(n-2) for n>=3. Show that there is a unique way to extend the definition of Fn to integers n<=0 such that (1) holds for all integers n, and obtain an explicit formula for the terms Fn with negative indices n.

    3. The attempt at a solution
    So I know the solution uses induction, and I think the first few negative terms should be F-1=-1, F-2=-1, F-3=-2 etc. So for the negative integers, Fn=F(n+1) + F(n+2) for n<0, but if the formula is supposed to extend to all integers n, that formula doesn't work...am I thinking about this problem wrong?
  2. jcsd
  3. Mar 17, 2010 #2
    Ok, so i worked on this a bit more, and found that the formula I'm trying to prove is Fn=F(n+2)-F(n+1), since this generates the negative terms...would the base case be n=1 and the induction hypothesis prove n=k-1?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook