Field in the presence of a background electromagnetic field

Click For Summary
The discussion focuses on deriving the Klein-Gordon equation in the presence of a background electromagnetic field using various mathematical manipulations. The initial attempt involves rearranging terms and incorporating additional components, leading to a new term 'c' that modifies the equation. Participants note the challenge of integrating suggested identities while maintaining the integrity of the Klein-Gordon equation. Typos in the initial formulation are acknowledged, prompting a revised approach that emphasizes the first term's contribution. The conversation highlights the complexity of the derivation and the need for further evaluation of the additional terms introduced.
Wledig
Messages
69
Reaction score
1
Homework Statement
A field obeying the Dirac equation in the presence of a background electromagnetic field also obeys the second-order equation:$$(i\gamma^{\mu}D_{\mu}+m)(i\gamma^{\nu}D_{\nu}-m)\Psi = 0$$ Where ##D_{\mu} = (\partial_{\mu} +ieA_{\mu})## Simplify this equation by using the identity $$\gamma^{\mu}\gamma^{\nu} = \dfrac{1}{2}\{\gamma^{\mu},\gamma^{\nu}\} + \dfrac{1}{2}[\gamma^{\mu} \gamma^{\nu}]$$
a) Show that it reduces to the Klein-Gordon equation plus one extra term.

b) Simplify the new term by proving the identity $$[D_{\mu},D_{\nu}] = +ieF_{\mu \nu}$$ . Using the explicit form of the ##\gamma^{\mu}## matrices evaluate this term in a background magnetic field for which ##F_ij = \epsilon_{ijk}B^k## and ##F_{0i} = 0##.

c) Act the resulting equation on ##\Psi = \begin{pmatrix}
\xi \\
0
\end{pmatrix}
e^{-imt}##. Show that to first order in B, the energy of the state is shifted by an term of the form of ##\Delta E = \mu \cdot B##. In the expression for ##\mu##, identify g = 2.
Relevant Equations
Klein Gordon equation: ##(\partial^2 + m^2)\phi(x) = 0##

Dirac equation solution he is referring to:
##\Psi = \begin{pmatrix}
\xi \\
0
\end{pmatrix}
e^{-imt}##

Magnetic moment: ##\mu = \dfrac{-geS}{2m}##
Attempt at a solution:

$$ -\gamma^{\mu}\gamma^{\nu}D_{\mu} D_{\nu} - im\gamma^{\mu} D_{\mu} + im\gamma^{\nu}D_{\nu} - m^2 =$$
$$ -\gamma^{\mu}\gamma^{\nu}(\partial_{\mu} + ieA_{\mu})(\partial_{\nu}-m) - I am \gamma^{\mu}(\partial_{\mu}+ieA_{\mu})+im\gamma^{\nu}(\partial_{\nu}+ieA_{\nu}) - m^2 =$$
$$ \gamma^{\mu}\gamma^{\nu}(\partial_{\mu} \partial_{\nu} - \partial_{\mu} m + ieA_{\mu} \partial_{\nu} - ieA_{\mu} m) - im\gamma^{\mu} \partial_{\mu} + emA_{\mu}\gamma^{\mu} + im\gamma^{\nu}\partial_{\nu}-em\gamma^{\nu} A_{\nu} - m^2$$

Rearranging the terms we can recover the Klein-Gordon equation with this additional term c:
$$ -\gamma^{\mu}\gamma^{\nu}\partial_\mu \partial_nu + im\gamma^{\nu}\partial_\nu - im\gamma^{\mu}\partial_\mu - m^2 + c$$
$$ -\eta^{\mu \nu} \partial_\mu \partial_\nu - m^2 + c$$
$$ c = \gamma^{\mu}\gamma^{\nu}ieA_{\mu}\partial_{\nu} + \gamma^{\mu}\gamma^{\nu}iemA_{\mu} + eA_{\mu}\gamma^{\mu} - m\gamma^{\nu}eA_{\nu}$$

I don't see a way to incorporate the identity he suggested and still recover the Klein Gordon equation.
 
Physics news on Phys.org
Just noticed a bunch of typos at my attempted solution, I apologize for that. Here's my new attempt, if we focus on the first term:
$$-\gamma^\mu \gamma^\nu D_\mu D_\nu =
-\dfrac{1}{2}( \{\gamma^\mu, \gamma^\nu \} + [\gamma^\mu,\gamma^\nu]) D_\mu D_\nu =$$
$$-\dfrac{1}{2}(2\eta^{\mu \nu} + [\gamma^\mu, \gamma^\nu]) D_\mu D_\nu =$$

$$\underline{-\eta^{\mu \nu}}(\underline{\partial_\mu \partial_\nu} + \partial_\mu i e A_\nu + ieA_\mu \partial_\nu - eA_\mu A_\nu) - \dfrac{1}{2}[\gamma^\mu, \gamma^\nu] D_\mu D_\nu$$

Now we can recover the Klein-Gordon equation combining the terms underlined up there with the ##-m^2## in:

$$-\gamma^{\mu}\gamma^{\nu}D_{\mu} D_{\nu} - im\gamma^{\mu} D_{\mu} + im\gamma^{\nu}D_{\nu} - m^2 $$

I still need some time to reavaluate the additional term though...
 
Last edited:
Ended up with an additional term of the form:
$$ c = -\eta^{\mu \nu} (\partial_\mu i e A_\nu + ie A_\mu \partial_\nu - eA_\mu \partial_\nu) - \dfrac{1}{2}[\gamma^\mu, \gamma^\nu]D_\mu D_\nu - im\gamma^\mu D_\mu + I am \gamma^\nu D_\nu$$

I'll probably have to fiddle with the indices in order to make ##[D_\mu , D_\nu] ## appear, I'm just not sure how to go about doing this...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
7
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K