Math Amateur
Gold Member
MHB
- 3,920
- 48
xample 13 from Nicholson: Introduction to Abstract Algebra, Section 6.2, page 282 reads as follows: (see attachment)
------------------------------------------------------------------------------------------------------------------
Example 13: If u = \sqrt[3]{2} show that \mathbb{Q}(u) = \mathbb{Q}(u)^2
------------------------------------------------------------------------------------------------------------------
The solution comes down to the following:
Given \mathbb{Q}(u) \supseteq \mathbb{Q}(u)^2 \supseteq \mathbb{Q}
so [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] \ [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ]
Now Nicholson shows that [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = 3 and [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] = 3
so [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1
Then Nicholson (I think) concludes that \mathbb{Q}(u) = \mathbb{Q}(u)^2
----------------------------------------------------------------------------------------------------------
My problem is as follows:
How (exactly) does it follow that:
[ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 \Longrightarrow \mathbb{Q}(u) = \mathbb{Q}(u)^2
Can someone help?
Peter
------------------------------------------------------------------------------------------------------------------
Example 13: If u = \sqrt[3]{2} show that \mathbb{Q}(u) = \mathbb{Q}(u)^2
------------------------------------------------------------------------------------------------------------------
The solution comes down to the following:
Given \mathbb{Q}(u) \supseteq \mathbb{Q}(u)^2 \supseteq \mathbb{Q}
so [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] \ [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ]
Now Nicholson shows that [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = 3 and [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] = 3
so [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1
Then Nicholson (I think) concludes that \mathbb{Q}(u) = \mathbb{Q}(u)^2
----------------------------------------------------------------------------------------------------------
My problem is as follows:
How (exactly) does it follow that:
[ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 \Longrightarrow \mathbb{Q}(u) = \mathbb{Q}(u)^2
Can someone help?
Peter