MHB Field Theory - Nicholson - Algebraic Extensions - Section 6.2 - Example 13

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
xample 13 from Nicholson: Introduction to Abstract Algebra, Section 6.2, page 282 reads as follows: (see attachment)

------------------------------------------------------------------------------------------------------------------

Example 13: If u = \sqrt[3]{2} show that \mathbb{Q}(u) = \mathbb{Q}(u)^2

------------------------------------------------------------------------------------------------------------------

The solution comes down to the following:

Given \mathbb{Q}(u) \supseteq \mathbb{Q}(u)^2 \supseteq \mathbb{Q}

so [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] \ [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ]

Now Nicholson shows that [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = 3 and [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] = 3

so [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1

Then Nicholson (I think) concludes that \mathbb{Q}(u) = \mathbb{Q}(u)^2

----------------------------------------------------------------------------------------------------------

My problem is as follows:

How (exactly) does it follow that:

[ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 \Longrightarrow \mathbb{Q}(u) = \mathbb{Q}(u)^2

Can someone help?

Peter
 
Physics news on Phys.org
Peter said:
xample 13 from Nicholson: Introduction to Abstract Algebra, Section 6.2, page 282 reads as follows: (see attachment)

------------------------------------------------------------------------------------------------------------------

Example 13: If u = \sqrt[3]{2} show that \mathbb{Q}(u) = \mathbb{Q}(u)^2

------------------------------------------------------------------------------------------------------------------

The solution comes down to the following:

Given \mathbb{Q}(u) \supseteq \mathbb{Q}(u)^2 \supseteq \mathbb{Q}

so [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] \ [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ]

Now Nicholson shows that [ \mathbb{Q}(u) \ : \ \mathbb{Q}] = 3 and [ \mathbb{Q}(u)^2 \ : \ \mathbb{Q} ] = 3

so [ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1

Then Nicholson (I think) concludes that \mathbb{Q}(u) = \mathbb{Q}(u)^2

----------------------------------------------------------------------------------------------------------

My problem is as follows:

How (exactly) does it follow that:

[ \mathbb{Q}(u) \ : \ \mathbb{Q}(u)^2] = 1 \Longrightarrow \mathbb{Q}(u) = \mathbb{Q}(u)^2

Can someone help?

Peter
I'd like to point put that the notation you are using is incorrect (or at least not standard). You write $\mathbb Q(u)^2$. I think you mean $\mathbb Q(u^2)$.

Now. We prove the following general fact.

Let $E$ be an extension of a field $F$ with $[E:F]=1$. Then $E=F$.

Proof: Suppose not. Then there is an element $a \in E\setminus F$. Clearly $a$ is algebraic over $F$. But since $[E:F(a)][F(a):F]=[E:F]=1$, we must have $[F(a):F]=1$. This forces $a\in F$ (as discussed in one of your previous threads). Thus we arrive at a contradiction. Thus $E=F$.

From here it is easy to see that $[\mathbb Q(u):\mathbb Q(u^2)]=1$ gives $\mathbb Q(u)=\mathbb Q(u^2)$ by putting $E=\mathbb Q(u)$ and $F=\mathbb Q(u^2)$ in the above claim.
 
caffeinemachine said:
I'd like to point put that the notation you are using is incorrect (or at least not standard). You write $\mathbb Q(u)^2$. I think you mean $\mathbb Q(u^2)$.

Now. We prove the following general fact.

Let $E$ be an extension of a field $F$ with $[E:F]=1$. Then $E=F$.

Proof: Suppose not. Then there is an element $a \in E\setminus F$. Clearly $a$ is algebraic over $F$. But since $[E:F(a)][F(a):F]=[E:F]=1$, we must have $[F(a):F]=1$. This forces $a\in F$ (as discussed in one of your previous threads). Thus we arrive at a contradiction. Thus $E=F$.

From here it is easy to see that $[\mathbb Q(u):\mathbb Q(u^2)]=1$ gives $\mathbb Q(u)=\mathbb Q(u^2)$ by putting $E=\mathbb Q(u)$ and $F=\mathbb Q(u^2)$ in the above claim.

Thanks caffeinemachine.

Yes, notation was wrong ... Was a typo, but you are correct to point it out!

Peter
 
Another approach:

Suppose $[E:F] = 1$ with $E$ algebraic over $F$, and assume $a \in E\setminus F$.

Then $a$ satisfies a polynomial of degree 1 in $F[x]$, say:

$f(x) = c_0 + c_1x$, where $c_1 \neq 0$.

Thus $c_0 + c_1a = 0$ so that: $a = -\dfrac{c_0}{c_1} \in F$, contradiction.

Thus $E = F$.

Yet another way to see this:

If $[E:F] = 1$, then $E$ as a vector space over $F$ has dimension 1. Since $1 \neq 0$ in $F$, we see that $\{1\}$ is a basis for $E$ over $F$, and hence any element $a \in E$ is of the form:

$a = c_0(1) = c_0$ for some $c_0 \in F$, that is: $E \subseteq F$, and since $F \subseteq E$ is trivial, we must have $E = F$.
 
Deveno said:
Another approach:

Suppose $[E:F] = 1$ with $E$ algebraic over $F$, and assume $a \in E\setminus F$.

Then $a$ satisfies a polynomial of degree 1 in $F[x]$, say:

$f(x) = c_0 + c_1x$, where $c_1 \neq 0$.

Thus $c_0 + c_1a = 0$ so that: $a = -\dfrac{c_0}{c_1} \in F$, contradiction.

Thus $E = F$.

Yet another way to see this:

If $[E:F] = 1$, then $E$ as a vector space over $F$ has dimension 1. Since $1 \neq 0$ in $F$, we see that $\{1\}$ is a basis for $E$ over $F$, and hence any element $a \in E$ is of the form:

$a = c_0(1) = c_0$ for some $c_0 \in F$, that is: $E \subseteq F$, and since $F \subseteq E$ is trivial, we must have $E = F$.
Thanks Deveno. Appreciate your help.

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top