Fields (Gravitational fields) -- Escape Velocity from the Moon

Click For Summary

Homework Help Overview

The discussion revolves around calculating the escape velocity from the Moon, specifically addressing a multiple-choice question where the original poster selected '4/81 v(esc)'. The subject area is gravitational fields and escape velocity concepts.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the reasoning behind the original poster's choice of answer, with one suggesting the need to show evidence of effort before receiving guidance. There are attempts to manipulate equations related to gravitational fields and escape velocity, with questions about algebraic steps and proportionality.

Discussion Status

The discussion is ongoing, with participants providing hints and prompting the original poster to check their algebra and consider the implications of their calculations. There is an emphasis on ensuring understanding through practice and verification of results.

Contextual Notes

Participants note the confusion arising from using the same symbols for different variables and suggest clarifying notation to avoid misunderstandings.

jellybean-spider
Messages
2
Reaction score
1
Homework Statement
The escape velocity for an object at the surface of the Earth is V(esc). The diameter of the moon is 4 times smaller than that of the Earth and the mass of the Moon is 81 times smaller than that of the Earth. What is the escape velocity of the object on the moon.
Relevant Equations
V(esc) = sqrt (2GM/R)
It's an MCQ, and I chose 4/81 v(esc). Is this correct? There isn't a marking scheme... :cry:
 
Physics news on Phys.org
√2G(1/81)M/(1/4)r = √2GM/r

This is with the information that I have got from the question and then I think using proportionality I got 4/81 v(sec)
 
jellybean-spider said:
√2G(1/81)M/(1/4)r = √2GM/r

This is with the information that I have got from the question and then I think using proportionality I got 4/81 v(sec)
Why don't you calculate the escape velocity of the Moon from that and check online to see whether you are right?
 
  • Like
Likes   Reactions: sysprog
jellybean-spider said:
√2G(1/81)M/(1/4)r = √2GM/r
Check your algebra. If you cancel √(GM/r) from both sides of your equation you are left with:
√(1/81)/(1/4)) = 1
which should sound (loud) alarm bells!

Hint: for practice/understanding, first solve a simple example:
If y=√x, what happens to y if, say, x increases by a factor of 25?

Then try the problem again. Don't forget to check your answer makes sense as suggested by by@PeroK.
 
jellybean-spider said:
√2G(1/81)M/(1/4)r = √2GM/r

This is with the information that I have got from the question and then I think using proportionality I got 4/81 v(sec)
It is too confusing using the same symbol for different variables. Add subscripts (##M_e, M_m## for Earth and Moon, etc.) or use different case (M, m, R, r) or different letters.
 
  • Like
Likes   Reactions: PeroK and sysprog

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
7K