Final exam questions: estimators.

Click For Summary
SUMMARY

The discussion focuses on the calculation of unbiased estimators for given probability density functions (pdfs). Specifically, it addresses two problems: determining the constant c in the estimator c(y1 + 2y2) for the pdf f(y, theta) = 2y(theta^2) and showing that W = (3/2n) ΣYi is an unbiased estimator for theta from the pdf fy(y; theta) = 2y/theta^2. The solutions involve evaluating expectations and setting them equal to the respective parameters being estimated, leading to the necessary conditions for unbiasedness.

PREREQUISITES
  • Understanding of unbiased estimators in statistics
  • Familiarity with probability density functions (pdfs)
  • Knowledge of expectation and variance calculations
  • Basic statistical inference concepts
NEXT STEPS
  • Study the properties of unbiased estimators in statistical theory
  • Learn about the method of moments for parameter estimation
  • Explore the concept of consistency in estimators
  • Investigate the derivation of estimators for maximum values, such as Ymax
USEFUL FOR

Students preparing for statistics exams, statisticians working with estimators, and anyone interested in the theoretical foundations of statistical estimation.

semidevil
Messages
156
Reaction score
2
have a final exam on monday, and cannot figure out the stuff on estimators:

1) a random sample of size 2, y1, y2 is drawn from the pdf f(y, theta) = 2y(theta^2), 1 < y < 1/theta.

what must c equal if the statistic c(y1 + 2y2) is to be an unbiased estimator for 1/theta.

I really don't know how to approach anything that asks about estimators. I know that unbiasedness implies E(theta) = theta. But how do I work this problem?

2. Let y1...y2...yn be a random sample size n from pdf fy(y;theta) = 2y/theta^2, 0 <y < y < theta.

show that W = 3/2n summation (Yi) is a unbiased estimator theta.
 
Physics news on Phys.org
semidevil said:
have a final exam on monday, and cannot figure out the stuff on estimators:

1) a random sample of size 2, y1, y2 is drawn from the pdf f(y, theta) = 2y(theta^2), 1 < y < 1/theta.

what must c equal if the statistic c(y1 + 2y2) is to be an unbiased estimator for 1/theta.

I really don't know how to approach anything that asks about estimators. I know that unbiasedness implies E(theta) = theta. But how do I work this problem?

2. Let y1...y2...yn be a random sample size n from pdf fy(y;theta) = 2y/theta^2, 0 <y < y < theta.

show that W = 3/2n summation (Yi) is a unbiased estimator theta.
SOLUTION HINTS:
For both cases, an Unbiased Estimator \hat{\omega} of distribution parameter \omega satisfies:

1: \ \ \ \ \ \ \mathbf{E}(\hat{\omega}) \, \ = \, \ \int \hat{\omega} \, f(y; \, \omega) \, dy \, \ = \, \ \omega \ \ \ \ \ \ \mbox{(Unbiased Estimator)}

where f(y; ω) is the Probability Density Function.
Thus, problem solution will involve evaluation of the following (for Problems #1 & 2 above, respectively), where the given Estimator is shown in blue on the left and the distribution parameter being estimated in red on the right. Complete the necessary steps, and solve for any required parameters:

2: \ \ \ \ \ \mathbf{E}\{\color{blue}c(y_{1} \ + \ 2y_{2})\color{black}\} \ \ = \ \ c \left \{ \mathbf{E}(y_{1}) + 2\mathbf{E}(y_{2}) \right \} \ \ = \ \ 3c\mathbf{E}(y) \ \ = \ \ 3c\int_{\displaystyle 1}^{\displaystyle 1/\theta} y \, (2y\theta^{2}) \, dy \ \ \color{red} \ \ \mathbf{??=??} \ \ \ \ 1/\theta \ \ \ \ \ \textsf{(Solve for c)}

3: \ \ \ \ \mathbf{E}\left(\color{blue} \frac{3}{2n}\sum_{i\,=\,1}^{n}y_{i} \color{black} \right) \ \ = \ \ \frac{3}{2n} \sum_{i\,=\,1}^{n} \mathbf{E}(y_{i}) \ \ = \ \ \frac{3}{2n} \{n\mathbf{E}(y)\} \ \ = \ \ \frac{3}{2}\,\mathbf{E}(y) \ \ = \ \ \frac{3}{2} \int_{\displaystyle 0}^{\displaystyle \theta} y \left(\frac {2y} {\theta^{2}}\right) \, dy \color{red} \ \ \ \ \mathbf{??=??} \ \ \ \ \theta


~~
 
Last edited:
xanthym said:
SOLUTION HINTS:
For both cases, an Unbiased Estimator \hat{\omega} of distribution parameter \omega satisfies:

1: \ \ \ \ \ \ \mathbf{E}(\hat{\omega}) \, \ = \, \ \int \hat{\omega} \, f(y; \, \omega) \, dy \, \ = \, \ \omega \ \ \ \ \ \ \mbox{(Unbiased Estimator)}

where f(y; ω) is the Probability Density Function.
Thus, problem solution will involve evaluation of the following (for Problems #1 & 2 above, respectively), where the given Estimator is shown in blue on the left and the distribution parameter being estimated in red on the right. Complete the necessary steps.

2: \ \ \ \ \ \mathbf{E}\{\color{blue}c(y_{1} \ + \ 2y_{2})\color{black}\} \ \ = \ \ c \left \{ \mathbf{E}(y_{1}) + 2\mathbf{E}(y_{2}) \right \} \ \ = \ \ 3c\mathbf{E}(y) \ \ = \ \ 3c\int_{\displaystyle 1}^{\displaystyle 1/\theta} y \, (2y\theta^{2}) \, dy \ \ \color{red} \ \ \mathbf{??=??} \ \ \ \ 1/\theta \ \ \ \ \ \textsf{(Solve for c)}

3: \ \ \ \ \mathbf{E}\left(\color{blue} \frac{3}{2n}\sum_{i\,=\,1}^{n}y_{i} \color{black} \right) \ \ = \ \ \frac{3}{2n} \sum_{i\,=\,1}^{n} \mathbf{E}(y_{i}) \ \ = \ \ \frac{3}{2n} \{n\mathbf{E}(y)\} \ \ = \ \ \frac{3}{2}\,\mathbf{E}(y) \ \ = \ \ \frac{3}{2} \int_{\displaystyle 0}^{\displaystyle \theta} y \left(\frac {2y} {\theta^{2}}\right) \, dy \color{red} \ \ \ \ \mathbf{??=??} \ \ \ \ \theta


~~

thank you, this helps very much. I was able to understand and solve it better. I have a question though. for the first problem, on solving for c, what do I set the equation equal to? since it is probability, do I set it equal to 1?

and I do have a couple more estimator questins if you dot mind. on the second problem, is it consistent? from definition, it is consistent if it converges to 1. but I don't see how to prove it. also, how do I find an unbiased estimator on Ymax?
 
thank you, this helps very much. I was able to understand and solve it better. I have a question though. for the first problem, on solving for c, what do I set the equation equal to? since it is probability, do I set it equal to 1?

and I do have a couple more estimator questins if you dot mind. on the second problem, is it consistent? from definition, it is consistent if it converges to 1. but I don't see how to prove it. also, how do I find an unbiased estimator on Ymax?
For Problem #1, solve for "c" which makes the estimator unbiased, which (in this case) involves setting the Eq #2 integral equal to (1/θ). See Problem #1 statement for other info.

An estimator \hat{\omega} of distribution parameter \omega is Consistent if 2 conditions are satisified:

4: \ \ \ \ \textsf{Condition #1:} \ \ \ \ \ \lim_{n \longrightarrow \infty} \textbf{E}(\hat{\omega}) \, \, = \, \, \omega

5: \ \ \ \ \textsf{Condition #2:} \ \ \ \ \ \lim_{n \longrightarrow \infty} var(\hat{\omega}) \, \, = \, \, 0

where "n" is Sample Size. Regarding Problem #2, Condition #1 above is true since the estimator is unbiased for all "n". For Condition #2, compute the estimator variance (using techniques similar to those shown in Msg #2) with the following:

6: \ \ \ \ var(\hat{\omega}) \, \ = \, \ \textbf{E}(\hat{\omega}^{2}) \, - \, \textbf{E}^{2}(\hat{\omega})


~~
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
699
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
19K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
Replies
4
Views
5K
Replies
24
Views
5K