Final speed of particle far away from rings with opposite charges

  • Thread starter Thread starter risakapal
  • Start date Start date
  • Tags Tags
    Particle Speed
AI Thread Summary
The discussion revolves around the confusion regarding the final speed of a particle influenced by rings with opposite charges. Participants express frustration over the grading system, questioning whether answers are evaluated by software or a person. There is a debate about the acceptable forms of mathematical expressions, with some arguing against square roots in denominators. A specific expression for speed is discussed, with participants acknowledging that while one form is acceptable, another is not due to the need for exact numerical values. The conversation highlights the challenges in achieving consensus on mathematical formatting and the reliability of automated grading systems.
risakapal
Messages
6
Reaction score
1
Homework Statement
As shown in the figure, a pair of rings of radius R are separated by a distance AR, where A=4, and are aligned with their symmetry axes along the z-axis. The rings have equal but opposite charges. The ring on the left carries charge -q, and the ring on the right carries charge q.

A positively charged particle with charge Q and mass m is released from rest on the z-axis a distance BR, where B = 3 to the right of the midpoint between the charged rings.

Derive an expression for the final speed v of the particle when it is very far away from the ring system in terms of the Coulomb constant k. Keep numerical values exact
Relevant Equations
V = kq/r
U = vq
KE = 1/2mv^2
Screenshot 2024-02-10 at 10.08.02 PM.png
2 Charged Rings.png


When I submitted it, this answer was incorrect.
 
Last edited:
Physics news on Phys.org
Looks right.
 
  • Like
Likes MatinSAR and SammyS
risakapal said:
When I submitted it, this answer was incorrect.
It's not a good idea to update a post after someone has replied, as I didn't see this update. You should have added a new post to this thread.
 
risakapal said:
When I submitted it, this answer was incorrect.
Do you know what the official answer is?
Is it checked by software or a person?
The expression could be put in various forms, e.g. ##\sqrt{\frac {kQq\sqrt 2}{mR}(1-\frac 1{\sqrt{13}})}##
 
  • Like
Likes PeroK and SammyS
haruspex said:
Do you know what the official answer is?
Is it checked by software or a person?
The expression could be put in various forms, e.g. ##\sqrt{\frac {kQq\sqrt 2}{mR}(1-\frac 1{\sqrt{13}})}##
I do not know the official answer. The question is automatically graded. Previously, I have not had issues with the form of the expression, but it may be the case here?
 
risakapal said:
I do not know the official answer. The question is automatically graded. Previously, I have not had issues with the form of the expression, but it may be the case here?
Maybe.
I see the identical question at https://www.chegg.com/homework-help...gned-symmetry-axes-along-axis-rings-q67223093, where it claims it to be solved, but the solution is paywalled.

Anyone have a Chegg account? I'm not hopeful that a) their solution is correct, and b) differs from yours.
 
risakapal said:
I do not know the official answer. The question is automatically graded. Previously, I have not had issues with the form of the expression, but it may be the case here?
I don't see how you could agree on an exact format for an expression like that. For example, there are some people who believe you should never have a square root in a denominator.
 
The answer $$ v = \sqrt { \frac { k Q q \sqrt { 2 } } { m R } ( 1 - \frac { 1 } { \sqrt { 13 } } ) } $$ is definitely a correct and acceptable answer. But the answer in a form like $$ v = \sqrt { 1,022 \frac { k Q q } { m R } } $$ is not a correct answer because numerical values must be kept exact.
 
PeroK said:
I don't see how you could agree on an exact format for an expression like that. For example, there are some people who believe you should never have a square root in a denominator.
I don't know how smart these systems can be at checking equivalence of algebraic forms.
 
  • #10
It worked! I simplified the 1/x1/2. Thanks for the help.
 
Back
Top