bluepilotg-2_07
- 9
- 0
- Homework Statement
- Expand #f(z) = \frac{1}{z(1-z)^2}# in a Laurent series over #-5 <= k <= 5# in the region #|z| > 1#
- Relevant Equations
- Laurent series
Since ##|z| > 1## we can rewrite as ##|\frac{1}{z}|<1##. I rewrite the function as $$\frac{1}{z} \frac{1}{z^2(1-\frac{1}{z})^2}$$. For a typical geometric series: $$\frac{1}{1-\frac{1}{z}}=\sum_{k=0}\left(\frac{1}{z}\right)^k$$. The derivative is: $$\frac{-1}{z^2(1-\frac{1}{z})^2}=\sum_{k=1}-kz^{-k-1}$$.Therefore:$$\frac{1}{z}\frac{1}{z^2(1-\frac{1}{z})^2}=\sum_{k=1}k\frac{1}{z^{k+2}}$$. This implies the terms ##-5 \leq k \leq 0## should be zero and the remaining should be:$$z^{-3}+2z^{-4}+3z^{-5}+4z^{-6}+5z^{-7}$$. I do not understand why this is being marked wrong.
Last edited: