Find all possible solutions of x^3 + 2 = 0

Click For Summary
SUMMARY

The discussion focuses on finding all possible solutions to the equation x^3 + 2 = 0. The primary method presented involves factoring the equation into linear and quadratic components, yielding one real solution, x = -∛2, and two complex solutions, x = (∛2/2) ± (∛2√3/2)i. Additionally, the use of polar form and Euler's formula is suggested for a deeper understanding of complex roots, emphasizing the geometric interpretation of solutions on the complex plane.

PREREQUISITES
  • Understanding of polynomial equations and their roots
  • Familiarity with complex numbers and their polar form
  • Knowledge of Euler's formula and de Moivre's theorem
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the polar form of complex numbers and its applications
  • Learn about Euler's formula and de Moivre's theorem
  • Explore methods for finding nth roots of complex numbers
  • Practice solving polynomial equations with complex coefficients
USEFUL FOR

Mathematicians, students studying algebra and complex analysis, and anyone interested in solving polynomial equations involving complex numbers.

BurpHa
Messages
47
Reaction score
14
Homework Statement
Find the exact solutions of ##x ^ 3 + 2 = 0##
Relevant Equations
##x = \frac {-b \pm \sqrt {b ^ 2 - 4ac}} {2a}##
I actually know one way to solve,

##x ^ 3 + 2 = 0##
##x ^ 3 + \left (\sqrt[3] 2\right) ^ 3 = 0##
##\left(x + \sqrt[3] 2\right) \left(x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2 \right)^2\right) =0##
##x + \sqrt[3] 2 = 0, x = -\sqrt[3] 2##
##x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2\right)^2 = 0, x = \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i##
So, the solution set is ##\{-\sqrt[3] 2, \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i \}##

However, I want to approach it like this,

##x ^ 3 + 2 = 0##
##x ^ 3 = -2##
##x = \sqrt[3]-2##
What could I do next? From what I see, there is only one solution in this way?
 
Physics news on Phys.org
Have you heard of the polar form of complex numbers?

Your approach is quite complicated, although you have rationalised denominators at least.
 
  • Like
Likes   Reactions: scottdave, DaveE and topsquark
BurpHa said:
Homework Statement:: Find the exact solutions of ##x ^ 3 + 2 = 0##
Relevant Equations:: ##x = \frac {-b \pm \sqrt {b ^ 2 - 4ac}} {2a}##

I actually know one way to solve,

##x ^ 3 + 2 = 0##
##x ^ 3 + \left (\sqrt[3] 2\right) ^ 3 = 0##
##\left(x + \sqrt[3] 2\right) \left(x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2 \right)^2\right) =0##
##x + \sqrt[3] 2 = 0, x = -\sqrt[3] 2##
##x ^ 2 - x\sqrt[3] 2 + \left(\sqrt[3] 2\right)^2 = 0, x = \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i##
So, the solution set is ##\{-\sqrt[3] 2, \frac {\sqrt[3] 2} {2} \pm \frac {\sqrt[3] 2 \sqrt 3 } {2}i \}##
This is correct
BurpHa said:
However, I want to approach it like this,

##x ^ 3 + 2 = 0##
##x ^ 3 = -2##
##x = \sqrt[3]-2##
What could I do next? From what I see, there is only one solution in this way?
There are still three solutions to that equation.
 
  • Like
Likes   Reactions: topsquark
PeroK said:
This is correct

There are still three solutions to that equation.
Could you tell me more? I've heard about polar form of complex numbers. How could polar form of complex numbers help in this case? Thank you.
 
  • Like
Likes   Reactions: scottdave, topsquark and BurpHa
As PeroK wrote, writing a complex number in polar form and using Euler's formula + de Moivre's theorem will give you the best insights and graphical intuition.

Another standard way to find the ##n##-th complex roots of a real number is to write the variable ##x## in your initial equation as a generic complex number ##a+ib## and then... well, see what happens if you are interested.
 
  • Like
Likes   Reactions: BurpHa
FranzS said:
As PeroK wrote, writing a complex number in polar form and using Euler's formula + de Moivre's theorem will give you the best insights and graphical intuition.

Another standard way to find the ##n##-th complex roots of a real number is to write the variable ##x## in your initial equation as a generic complex number ##a+ib## and then... well, see what happens if you are interested.
Thank you.
 
Your "relevant equations" is not really relevant here...

Anyway, you found one solution which has real part = 0 and positive imaginary part.
The solutions to the equation ##z^n = w## are equally "spread" around a circle with the origin as the center and spaced ##2\pi/n##.
You now have one solution ## z_1 = 2^{1/3} \mathrm{i} ##.
Now you can use simple geometry to find the other two solutions.
The radius of your circle will be ##2^{1/3}##
 
Last edited:
  • Like
Likes   Reactions: BurpHa
  • #10
malawi_glenn said:
Your "relevant equations" is not really relevant here...
It's relevant after you pull the linear factor out of ##x^3 + 2## and are left with a quadratic polynomial factor.
 
  • Like
Likes   Reactions: BurpHa and SammyS

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K