- #1
- 3,021
- 7
Homework Statement
Find all x such that ##|x-1|+|x-2|>1##.
Homework Equations
Definition of absolute value:
|x| = x if x ≥ 0.
|x| = -x if x ≤ 0.
The Attempt at a Solution
I figured the most straightforward way if to do this case-wise:
Case 1: ##(x-1)>0 \wedge (x-2)>0## then
##(x-1) + (x-2) > 1 \implies x > 2.##
Case 2: ##(x-1)<0 \wedge (x-2)<0## then
## (1-x) + (2-x) > 1 \implies x<2.##
Case 3: ##(x-1)>0 \wedge (x-2)<0## then
## (x-1)+(1-x) > 1 \implies 0 >1. ##
Case 4: ##(x-1)<0 \wedge (x-2)>0## then
## (1-x) + (x+2) > 1 \implies 3 > 1. ##
Cases 3 and 4 are bothering me because x 'drops out.' Case 3 makes no sense and has me wondering if Case 4 even makes sense.