Find angle ADB in this isoceles triangle given some extra information

Click For Summary

Homework Help Overview

The discussion revolves around finding angle ADB in an isosceles triangle, utilizing the sine rule and various trigonometric identities. Participants are exploring relationships between angles and sides based on given values.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss using the sine rule to relate sides and angles, with some attempting to simplify expressions involving sine functions. There are also considerations of angle relationships and potential alternative approaches.

Discussion Status

Multiple approaches are being explored, with some participants questioning the validity of their calculations and assumptions. There is no explicit consensus yet, but various lines of reasoning are being examined, including simplifications and angle calculations.

Contextual Notes

Some participants mention the complexity of calculations when using mobile devices, which may affect the clarity of their contributions. The original poster's intent and the specific constraints of the problem are not fully detailed.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached.
Relevant Equations
Trigonometry
Question;

1719308095452.png


My take,

I have,

1719308542238.png


then
using sine rule;

##\dfrac{x}{x+y} = \dfrac{\sin 20^{\circ}}{\sin 80^{\circ}}##

##\dfrac{x}{x+y} =0.347##

##x=3.47## then ##y=6.53##.

then,

##BD^2=3.47^2+10^2-(2×3.47×10×\cos 20^{\circ})##

##BD= 6.842##

...

##10^2=3.47^2+6.842^2-(2×3.47×6.842 ×\cos m)##

##41.15=-47.4696\cos m##

##\cos m = -0.866##

##m= 150^{\circ}##


there could be a better approach...just came across this question today.
 
  • Like
Likes   Reactions: dipcario34
Physics news on Phys.org
## \frac {x}{x+y} = \frac {\sin 20^\circ}{\sin 80^\circ} = \frac {\sin (160^\circ-m)}{\sin m} ##
 
  • Like
Likes   Reactions: chwala
Gavran said:
## \frac {x}{x+y} = \frac {\sin 20^\circ}{\sin 80^\circ} = \frac {\sin (160^\circ-m)}{\sin m} ##
@Gavran following your approach, i am ending up with ##\tan m = -0.5773##

I'll post steps later once I get my hands on laptop...(a bit tedious as you have to use sine expansion) as I am using phone to type.

We then end up with,

##m= -30^0##

...then repititive every ##180^0## for tan, implying

##m= -30^0+180^0=150^0##

Unless am missing something...that's how I look at your approach...
 
Last edited:
  • Like
Likes   Reactions: Gavran
Gavran said:
##\displaystyle \frac {x}{x+y} = \frac {\sin 20^\circ}{\sin 80^\circ} = \frac {\sin (160^\circ-m)}{\sin m} ##
I don't know if this will help OP, but ##\displaystyle\ \frac {\sin 20^\circ}{\sin 80^\circ}\ ## can be simplified to ##\displaystyle\ {2\sin 10^\circ}\ .## Use the double angle identity for ##\sin 20^\circ## and that ##\displaystyle \sin 80^\circ = \cos 10^\circ## .

Or simpler: Use a construction to find ##\displaystyle\ \sin \frac{20^\circ}{2} \ ## directly.
 
  • Like
Likes   Reactions: Gavran, Lnewqban and chwala
SammyS said:
I don't know if this will help OP, but ##\displaystyle\ \frac {\sin 20^\circ}{\sin 80^\circ}\ ## can be simplified to ##\displaystyle\ {2\sin 10^\circ}\ .## Use the double angle identity for ##\sin 20^\circ## and that ##\displaystyle \sin 80^\circ = \cos 10^\circ## .

Or simpler: Use a construction to find ##\displaystyle\ \sin \frac{20^\circ}{2} \ ## directly.
Smart move man @SammyS
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
22
Views
4K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 114 ·
4
Replies
114
Views
12K