MHB Find Area of A Rectangle With Shortcut

  • Thread starter Thread starter susanto3311
  • Start date Start date
  • Tags Tags
    Area Rectangle
AI Thread Summary
To find the area of a rectangle with a perimeter of 72 cm, additional information about the rectangle's dimensions is required, as multiple rectangles can share the same perimeter. By defining the height as a variable, the base can be expressed as the difference from half the perimeter, leading to the area formula A = (36 - h)h. The maximum area occurs when the rectangle is a square, yielding an upper limit of 324 cm². The semi-perimeter of 36 cm is crucial for determining the relationship between the base and height. Understanding these concepts allows for a straightforward calculation of the area based on the chosen dimensions.
susanto3311
Messages
73
Reaction score
0
hi all...

how do you find area of a rectangle, if its perimeter of a rectangle is = 72 cm?

i mean how to easy find it without hard work.

do you have a formula or just tricks similar like..

http://calculus-geometry.hubpages.com/hub/How-to-Find-the-Area-Perimeter-and-Diagonal-of-a-Rectangle

thanks in advance...

susanto
 
Mathematics news on Phys.org
For a given perimeter, there are an infinite number of rectangles that will have that perimeter. We need more information about the rectangle.
 
MarkFL said:
For a given perimeter, there are an infinite number of rectangles that will have that perimeter. We need more information about the rectangle.

if perimeter of a rectangle is = 72 cm, counting area of a rectangle =...

i need simple formula to calculate it.
possible?
 
Well, suppose we let the height $0<h<36$ be a free variable, then the base $b$ is $b=36-h$. Thus the area $A$ is:

$$A=bh=(36-h)h$$

Thus we find:

$$0<A\le324$$
 
The sum of the base and the height must be equal to the semi-perimeter, which is 36...half of 72. And the maximum area comes from the base and height being equal. So the upper bound is $18^2=324$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top