MHB Find Area of A Rectangle With Shortcut

  • Thread starter Thread starter susanto3311
  • Start date Start date
  • Tags Tags
    Area Rectangle
Click For Summary
To find the area of a rectangle with a perimeter of 72 cm, additional information about the rectangle's dimensions is required, as multiple rectangles can share the same perimeter. By defining the height as a variable, the base can be expressed as the difference from half the perimeter, leading to the area formula A = (36 - h)h. The maximum area occurs when the rectangle is a square, yielding an upper limit of 324 cm². The semi-perimeter of 36 cm is crucial for determining the relationship between the base and height. Understanding these concepts allows for a straightforward calculation of the area based on the chosen dimensions.
susanto3311
Messages
73
Reaction score
0
hi all...

how do you find area of a rectangle, if its perimeter of a rectangle is = 72 cm?

i mean how to easy find it without hard work.

do you have a formula or just tricks similar like..

http://calculus-geometry.hubpages.com/hub/How-to-Find-the-Area-Perimeter-and-Diagonal-of-a-Rectangle

thanks in advance...

susanto
 
Mathematics news on Phys.org
For a given perimeter, there are an infinite number of rectangles that will have that perimeter. We need more information about the rectangle.
 
MarkFL said:
For a given perimeter, there are an infinite number of rectangles that will have that perimeter. We need more information about the rectangle.

if perimeter of a rectangle is = 72 cm, counting area of a rectangle =...

i need simple formula to calculate it.
possible?
 
Well, suppose we let the height $0<h<36$ be a free variable, then the base $b$ is $b=36-h$. Thus the area $A$ is:

$$A=bh=(36-h)h$$

Thus we find:

$$0<A\le324$$
 
The sum of the base and the height must be equal to the semi-perimeter, which is 36...half of 72. And the maximum area comes from the base and height being equal. So the upper bound is $18^2=324$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K