Find Coefficient of Friction for Toy Car Rolling Down Slope

  • Context: MHB 
  • Thread starter Thread starter Shah 72
  • Start date Start date
  • Tags Tags
    Friction Mechanics
Click For Summary
SUMMARY

The coefficient of friction for a toy car rolling down a slope at a 16-degree angle has been calculated to be 0.0956. The car, with a mass of 80g, rolls 80cm down the slope and bounces back up to a height of 10cm with its speed halved. The calculations involve using the equations of motion and the forces acting on the car, specifically the acceleration due to gravity and friction. The final formula derived is μ = tan(θ)/3, confirming the textbook answer.

PREREQUISITES
  • Understanding of basic physics concepts such as forces and motion
  • Familiarity with trigonometric functions, specifically sine and cosine
  • Knowledge of kinematic equations for linear motion
  • Ability to solve algebraic equations involving multiple variables
NEXT STEPS
  • Study the derivation of kinematic equations in physics
  • Learn about the role of friction in motion and its calculation
  • Explore the application of trigonometric functions in physics problems
  • Investigate more complex dynamics involving inclined planes and friction
USEFUL FOR

Students studying physics, educators teaching mechanics, and anyone interested in understanding the dynamics of motion on inclined surfaces.

Shah 72
MHB
Messages
274
Reaction score
0
A toy car of mass 80g rolls from rest 80cm down a rough slope at an angle of 16 degree to the horizontal. When it hits a rubber barrier at the bottom of the slope it bounces back up the slope with its speed halved and reaches a height of 10 cm. Find the coefficient of friction between the car and the slope.
m= 0.08kg, u= 0m/s, s=0.8m, a>0
F=m×a
a1= 10 (sin 16- mu cos16)
V^2=u^2+2as
V^2=16(sin16-mu cos 16)
Coming up= a<0, s=0.1m
Speed is halved
So u^2=8(sin 16- mu cos 16)
a2=-10(sin 16+ mu cos 16)
V^2= u^2+2as
I got 0= 8( sin 16- mu cos 16)-2(sin16+mu cos 16)
I don't get the right ans given in the textbook which is coefficient of friction =0.0956
 
Mathematics news on Phys.org
Shah 72 said:
A toy car of mass 80g rolls from rest 80cm down a rough slope at an angle of 16 degree to the horizontal. When it hits a rubber barrier at the bottom of the slope it bounces back up the slope with its speed halved and reaches a height of 10 cm. Find the coefficient of friction between the car and the slope.

10 cm is not the "height" ... it's the distance the toy travels back up the slope.
Is this exactly how the problem was stated?

downhill ...

$a_1 = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = 0^2 + 2a_1 \cdot (0.8)$

uphill ...

$a_2 = -g(\sin{\theta}+\mu \cos{\theta})$

$0^2 = \left(\dfrac{v_f}{2}\right)^2 + 2a_2 \cdot (0.1)$only unknowns are $v_f$ and $\mu$

solve the system
 
Last edited by a moderator:
skeeter said:
10 cm is not the "height" ... it's the distance the toy travels back up the slope.
Is this exactly how the problem was stated?

downhill ...

$a_1 = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = 0^2 + 2a_1 \cdot (0.8)$

uphill ...

$a_2 = -g(\sin{\theta}+\mu \cos{\theta})$

$0^2 = \left(\dfrac{v_f}{2}\right)^2 + 2a_2 \cdot (0.1)$only unknowns are $v_f$ and $\mu$

solve the system
Yes that's exactly the way problem is stated.
 
Shah 72 said:
Yes that's exactly the way problem is stated.
a1=10(sin16- mu cos 16)
V^2=0+2×10×0.8(sin 16- mu cos 16)
For going uphill
V=0m/s, u^2=4(sin 16- mu cos 16)
V^2= 4(sin 16- mu cos 16)- 2×10×0.1(sin16+ mu cos 16)
I still get the wrong ans for coefficient of friction
Textbook ans is 0.0956
 
Last edited:
skeeter said:
downhill ...

$a_1 = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = 0^2 + 2a_1 \cdot (0.8)$
$v_f^2 = 16\sin{\theta} - 16\mu \cos{\theta}$

uphill ...

$a_2 = -g(\sin{\theta}+\mu \cos{\theta})$

$0^2 = \left(\dfrac{v_f}{2}\right)^2 + 2a_2 \cdot (0.1)$
$v_f^2 = 8\sin{\theta} + 8\mu\cos{\theta}$

$16\sin{\theta} - 16\mu \cos{\theta} = 8\sin{\theta} + 8\mu\cos{\theta}$

$2\sin{\theta} - 2\mu \cos{\theta} = \sin{\theta} + \mu\cos{\theta}$

$\sin{\theta} = 3\mu\cos{\theta}$

$\mu = \dfrac{\tan{\theta}}{3} = 0.0956$

please cite the source for these problems ...
 
skeeter said:
$v_f^2 = 16\sin{\theta} - 16\mu \cos{\theta}$

$v_f^2 = 8\sin{\theta} + 8\mu\cos{\theta}$

$16\sin{\theta} - 16\mu \cos{\theta} = 8\sin{\theta} + 8\mu\cos{\theta}$

$2\sin{\theta} - 2\mu \cos{\theta} = \sin{\theta} + \mu\cos{\theta}$

$\sin{\theta} = 3\mu\cos{\theta}$

$\mu = \dfrac{\tan{\theta}}{3} = 0.0956$

please cite the source for these problems ...
Thank you so so so much!
 
skeeter said:
$v_f^2 = 16\sin{\theta} - 16\mu \cos{\theta}$

$v_f^2 = 8\sin{\theta} + 8\mu\cos{\theta}$

$16\sin{\theta} - 16\mu \cos{\theta} = 8\sin{\theta} + 8\mu\cos{\theta}$

$2\sin{\theta} - 2\mu \cos{\theta} = \sin{\theta} + \mu\cos{\theta}$

$\sin{\theta} = 3\mu\cos{\theta}$

$\mu = \dfrac{\tan{\theta}}{3} = 0.0956$

please cite the source for these problems ...
It's from cie mechanics
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
46
Views
5K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
971
Replies
1
Views
828