Find Coefficient of Friction for Toy Car Rolling Down Slope

  • Context: MHB 
  • Thread starter Thread starter Shah 72
  • Start date Start date
  • Tags Tags
    Friction Mechanics
Click For Summary

Discussion Overview

The discussion revolves around calculating the coefficient of friction for a toy car rolling down a slope. Participants analyze the motion of the car as it travels down and then rebounds up the slope after hitting a barrier. The problem involves applying principles of physics related to forces, acceleration, and energy conservation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the initial conditions and equations of motion for the toy car, including mass, distance, and angle of the slope.
  • Another participant clarifies that the 10 cm mentioned is the distance traveled back up the slope, not the height, and reiterates the equations for acceleration both downhill and uphill.
  • Multiple participants derive equations for the final velocity and acceleration, expressing them in terms of the coefficient of friction (μ) and the angle of the slope (θ).
  • Some participants suggest that the calculations lead to the conclusion that μ = tan(θ)/3, which results in a coefficient of friction of approximately 0.0956.
  • There are repeated acknowledgments of the textbook answer being 0.0956, but participants express uncertainty about their own calculations leading to this value.
  • One participant requests a citation for the source of the problem, indicating a desire for verification of the problem's context.

Areas of Agreement / Disagreement

Participants generally agree on the approach to solving the problem and the equations used, but there is no consensus on the correctness of their individual calculations or the interpretation of the problem statement. Disagreements arise regarding the interpretation of the distance traveled back up the slope and the derivation of the coefficient of friction.

Contextual Notes

Participants express uncertainty about the accuracy of their calculations and the assumptions made in deriving the coefficient of friction. The discussion includes multiple interpretations of the problem statement and the physical scenario involved.

Who May Find This Useful

This discussion may be useful for students or individuals interested in mechanics, particularly those studying the dynamics of objects on inclined planes and the application of friction in motion analysis.

Shah 72
MHB
Messages
274
Reaction score
0
A toy car of mass 80g rolls from rest 80cm down a rough slope at an angle of 16 degree to the horizontal. When it hits a rubber barrier at the bottom of the slope it bounces back up the slope with its speed halved and reaches a height of 10 cm. Find the coefficient of friction between the car and the slope.
m= 0.08kg, u= 0m/s, s=0.8m, a>0
F=m×a
a1= 10 (sin 16- mu cos16)
V^2=u^2+2as
V^2=16(sin16-mu cos 16)
Coming up= a<0, s=0.1m
Speed is halved
So u^2=8(sin 16- mu cos 16)
a2=-10(sin 16+ mu cos 16)
V^2= u^2+2as
I got 0= 8( sin 16- mu cos 16)-2(sin16+mu cos 16)
I don't get the right ans given in the textbook which is coefficient of friction =0.0956
 
Mathematics news on Phys.org
Shah 72 said:
A toy car of mass 80g rolls from rest 80cm down a rough slope at an angle of 16 degree to the horizontal. When it hits a rubber barrier at the bottom of the slope it bounces back up the slope with its speed halved and reaches a height of 10 cm. Find the coefficient of friction between the car and the slope.

10 cm is not the "height" ... it's the distance the toy travels back up the slope.
Is this exactly how the problem was stated?

downhill ...

$a_1 = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = 0^2 + 2a_1 \cdot (0.8)$

uphill ...

$a_2 = -g(\sin{\theta}+\mu \cos{\theta})$

$0^2 = \left(\dfrac{v_f}{2}\right)^2 + 2a_2 \cdot (0.1)$only unknowns are $v_f$ and $\mu$

solve the system
 
Last edited by a moderator:
skeeter said:
10 cm is not the "height" ... it's the distance the toy travels back up the slope.
Is this exactly how the problem was stated?

downhill ...

$a_1 = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = 0^2 + 2a_1 \cdot (0.8)$

uphill ...

$a_2 = -g(\sin{\theta}+\mu \cos{\theta})$

$0^2 = \left(\dfrac{v_f}{2}\right)^2 + 2a_2 \cdot (0.1)$only unknowns are $v_f$ and $\mu$

solve the system
Yes that's exactly the way problem is stated.
 
Shah 72 said:
Yes that's exactly the way problem is stated.
a1=10(sin16- mu cos 16)
V^2=0+2×10×0.8(sin 16- mu cos 16)
For going uphill
V=0m/s, u^2=4(sin 16- mu cos 16)
V^2= 4(sin 16- mu cos 16)- 2×10×0.1(sin16+ mu cos 16)
I still get the wrong ans for coefficient of friction
Textbook ans is 0.0956
 
Last edited:
skeeter said:
downhill ...

$a_1 = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = 0^2 + 2a_1 \cdot (0.8)$
$v_f^2 = 16\sin{\theta} - 16\mu \cos{\theta}$

uphill ...

$a_2 = -g(\sin{\theta}+\mu \cos{\theta})$

$0^2 = \left(\dfrac{v_f}{2}\right)^2 + 2a_2 \cdot (0.1)$
$v_f^2 = 8\sin{\theta} + 8\mu\cos{\theta}$

$16\sin{\theta} - 16\mu \cos{\theta} = 8\sin{\theta} + 8\mu\cos{\theta}$

$2\sin{\theta} - 2\mu \cos{\theta} = \sin{\theta} + \mu\cos{\theta}$

$\sin{\theta} = 3\mu\cos{\theta}$

$\mu = \dfrac{\tan{\theta}}{3} = 0.0956$

please cite the source for these problems ...
 
skeeter said:
$v_f^2 = 16\sin{\theta} - 16\mu \cos{\theta}$

$v_f^2 = 8\sin{\theta} + 8\mu\cos{\theta}$

$16\sin{\theta} - 16\mu \cos{\theta} = 8\sin{\theta} + 8\mu\cos{\theta}$

$2\sin{\theta} - 2\mu \cos{\theta} = \sin{\theta} + \mu\cos{\theta}$

$\sin{\theta} = 3\mu\cos{\theta}$

$\mu = \dfrac{\tan{\theta}}{3} = 0.0956$

please cite the source for these problems ...
Thank you so so so much!
 
skeeter said:
$v_f^2 = 16\sin{\theta} - 16\mu \cos{\theta}$

$v_f^2 = 8\sin{\theta} + 8\mu\cos{\theta}$

$16\sin{\theta} - 16\mu \cos{\theta} = 8\sin{\theta} + 8\mu\cos{\theta}$

$2\sin{\theta} - 2\mu \cos{\theta} = \sin{\theta} + \mu\cos{\theta}$

$\sin{\theta} = 3\mu\cos{\theta}$

$\mu = \dfrac{\tan{\theta}}{3} = 0.0956$

please cite the source for these problems ...
It's from cie mechanics
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
46
Views
6K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
1
Views
844