MHB Find determinant by row reduction in echelon

Click For Summary
The discussion focuses on finding the determinant of a matrix through row reduction to echelon form. Participants demonstrate the process by performing row operations, such as adding multiples of one row to another, to achieve zeros below the leading coefficients. The calculations lead to an upper triangular matrix, where the determinant can be computed as the product of the diagonal elements. The final determinant is confirmed to be 18 after adjusting for row exchanges and sign changes. The method emphasizes the importance of systematic row operations in simplifying the matrix for determinant calculation.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-6\\ -1&-4&4 \\ -2&-7 & 9
\end{array}
\right|$$
ok i multiplied $r_1$ by 1 and added it to $r_2$ to get
$$\left|
\begin{array}{rrr}
1&5&-6\\ 0&1&-2 \\ -2&-7 & 9
\end{array}
\right|$$
but how do you get $0 \,0 \, r_3 c_3$
so it will be in echelon form?
the book answer is $3$
 
Physics news on Phys.org
karush said:
$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-6\\ -1&-4&4 \\ -2&-7 & 9
\end{array}
\right|$$
ok i multiplied $r_1$ by 1 and added it to $r_2$ to get
$$\left|
\begin{array}{rrr}
1&5&-6\\ 0&1&-2 \\ -2&-7 & 9
\end{array}
\right|$$
but how do you get $0 \,0 \, r_3 c_3$
so it will be in echelon form?
the book answer is $3$

multiply $r_1$ by 2 and add to $r_3$ ...

$\begin{vmatrix}
1 & 5 & -6\\
0 & 1 & -2 \\
0 & 3 & -3
\end{vmatrix}$

multiply $r_2$ by -3 and add to $r_3$ ...

$\begin{vmatrix}
1 & 5 & -6\\
0 & 1 & -2 \\
0 & 0 & 3
\end{vmatrix}$
 
one more

$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 2&13 &-7
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $-2$ and added to $r_3$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $6$ and added to $r_2$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 0&0&-6 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ exchange $r_3$ and $r_2$ change sign} $
$$-\left|
\begin{array}{rrr}
1&5&-3\\ 0&3&-1 \\ 0&0 &-6
\end{array}
\right|=18$$
 
Last edited:
karush said:
one more

$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 2&13 &-7
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $-2$ and added to $r_3$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $\color{red}{6}$ and added to $r_2$} $ ?
$$\left|
\begin{array}{rrr}
1&5&-3\\ 0&0&-6 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ exchange $r_3$ and $r_2$ change sign} $
$$-\left|
\begin{array}{rrr}
1&5&-3\\ 0&3&-1 \\ 0&0 &-6
\end{array}
\right|=18$$

...

$\begin{bmatrix}
1 & 5 &-3 \\
3 & -3 &3 \\
2 & 13 & -7
\end{bmatrix}$

$-2r_1 + r_3 \to r_3$

$\begin{bmatrix}
1 & 5 &-3 \\
3 & -3 &3 \\
0 & 3 & -1
\end{bmatrix}$

$-3r_1 + r_2 \to r_2$

$\begin{bmatrix}
1 & 5 &-3 \\
0 & -18 &12 \\
0 & 3 & -1
\end{bmatrix}$

$\dfrac{1}{6}r_2 + r_3 \to r_3$

$\begin{bmatrix}
1 & 5 &-3 \\
0 & -18 &12 \\
0 & 0 & 1
\end{bmatrix}$

determinant of an upper triangular matrix is the product of the terms in the diagonal ...

$(1)(-18)(1) = -18$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K