Find determinant by row reduction in echelon

Click For Summary

Discussion Overview

The discussion revolves around finding the determinants of matrices by row reduction to echelon form. Participants explore various methods of row operations and their implications on the determinant values.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant begins with a matrix and performs row operations to simplify it, questioning how to achieve a specific echelon form.
  • Another participant follows a similar approach with a different matrix, detailing the steps taken and expressing uncertainty about the row operations leading to the final echelon form.
  • Multiple participants provide their own matrices and describe their row reduction processes, including specific operations and the resulting matrices.
  • There are mentions of determinant values calculated from the final echelon forms, but participants do not reach a consensus on the correctness of these values.
  • Some participants exchange rows and change signs, discussing the impact of these operations on the determinant calculation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the determinant values for the matrices discussed, and there are multiple competing views on the row operations and their correctness.

Contextual Notes

Some participants express uncertainty about specific steps in the row reduction process, and there are unresolved questions regarding the impact of certain operations on the determinant.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-6\\ -1&-4&4 \\ -2&-7 & 9
\end{array}
\right|$$
ok i multiplied $r_1$ by 1 and added it to $r_2$ to get
$$\left|
\begin{array}{rrr}
1&5&-6\\ 0&1&-2 \\ -2&-7 & 9
\end{array}
\right|$$
but how do you get $0 \,0 \, r_3 c_3$
so it will be in echelon form?
the book answer is $3$
 
Physics news on Phys.org
karush said:
$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-6\\ -1&-4&4 \\ -2&-7 & 9
\end{array}
\right|$$
ok i multiplied $r_1$ by 1 and added it to $r_2$ to get
$$\left|
\begin{array}{rrr}
1&5&-6\\ 0&1&-2 \\ -2&-7 & 9
\end{array}
\right|$$
but how do you get $0 \,0 \, r_3 c_3$
so it will be in echelon form?
the book answer is $3$

multiply $r_1$ by 2 and add to $r_3$ ...

$\begin{vmatrix}
1 & 5 & -6\\
0 & 1 & -2 \\
0 & 3 & -3
\end{vmatrix}$

multiply $r_2$ by -3 and add to $r_3$ ...

$\begin{vmatrix}
1 & 5 & -6\\
0 & 1 & -2 \\
0 & 0 & 3
\end{vmatrix}$
 
one more

$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 2&13 &-7
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $-2$ and added to $r_3$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $6$ and added to $r_2$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 0&0&-6 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ exchange $r_3$ and $r_2$ change sign} $
$$-\left|
\begin{array}{rrr}
1&5&-3\\ 0&3&-1 \\ 0&0 &-6
\end{array}
\right|=18$$
 
Last edited:
karush said:
one more

$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 2&13 &-7
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $-2$ and added to $r_3$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $\color{red}{6}$ and added to $r_2$} $ ?
$$\left|
\begin{array}{rrr}
1&5&-3\\ 0&0&-6 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ exchange $r_3$ and $r_2$ change sign} $
$$-\left|
\begin{array}{rrr}
1&5&-3\\ 0&3&-1 \\ 0&0 &-6
\end{array}
\right|=18$$

...

$\begin{bmatrix}
1 & 5 &-3 \\
3 & -3 &3 \\
2 & 13 & -7
\end{bmatrix}$

$-2r_1 + r_3 \to r_3$

$\begin{bmatrix}
1 & 5 &-3 \\
3 & -3 &3 \\
0 & 3 & -1
\end{bmatrix}$

$-3r_1 + r_2 \to r_2$

$\begin{bmatrix}
1 & 5 &-3 \\
0 & -18 &12 \\
0 & 3 & -1
\end{bmatrix}$

$\dfrac{1}{6}r_2 + r_3 \to r_3$

$\begin{bmatrix}
1 & 5 &-3 \\
0 & -18 &12 \\
0 & 0 & 1
\end{bmatrix}$

determinant of an upper triangular matrix is the product of the terms in the diagonal ...

$(1)(-18)(1) = -18$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K