Find determinant by row reduction in echelon

Click For Summary
SUMMARY

The discussion focuses on finding determinants through row reduction to echelon form using a 3x3 matrix. Participants detail the steps taken to manipulate the rows, including operations such as multiplying and adding rows to achieve zeros below the leading coefficients. The final determinant is confirmed to be 18 after performing the necessary row operations and transforming the matrix into an upper triangular form. The process emphasizes the importance of systematic row operations in linear algebra.

PREREQUISITES
  • Understanding of matrix operations, including row addition and scalar multiplication.
  • Familiarity with echelon form and upper triangular matrices.
  • Knowledge of determinants and their properties in linear algebra.
  • Experience with Gaussian elimination techniques for solving linear systems.
NEXT STEPS
  • Study the process of Gaussian elimination in detail.
  • Learn about the properties of determinants, particularly for triangular matrices.
  • Explore advanced matrix operations in software tools like MATLAB or Python's NumPy.
  • Investigate applications of determinants in solving linear equations and in geometry.
USEFUL FOR

Students and educators in linear algebra, mathematicians focusing on matrix theory, and anyone involved in computational mathematics or engineering requiring determinant calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-6\\ -1&-4&4 \\ -2&-7 & 9
\end{array}
\right|$$
ok i multiplied $r_1$ by 1 and added it to $r_2$ to get
$$\left|
\begin{array}{rrr}
1&5&-6\\ 0&1&-2 \\ -2&-7 & 9
\end{array}
\right|$$
but how do you get $0 \,0 \, r_3 c_3$
so it will be in echelon form?
the book answer is $3$
 
Physics news on Phys.org
karush said:
$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-6\\ -1&-4&4 \\ -2&-7 & 9
\end{array}
\right|$$
ok i multiplied $r_1$ by 1 and added it to $r_2$ to get
$$\left|
\begin{array}{rrr}
1&5&-6\\ 0&1&-2 \\ -2&-7 & 9
\end{array}
\right|$$
but how do you get $0 \,0 \, r_3 c_3$
so it will be in echelon form?
the book answer is $3$

multiply $r_1$ by 2 and add to $r_3$ ...

$\begin{vmatrix}
1 & 5 & -6\\
0 & 1 & -2 \\
0 & 3 & -3
\end{vmatrix}$

multiply $r_2$ by -3 and add to $r_3$ ...

$\begin{vmatrix}
1 & 5 & -6\\
0 & 1 & -2 \\
0 & 0 & 3
\end{vmatrix}$
 
one more

$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 2&13 &-7
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $-2$ and added to $r_3$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $6$ and added to $r_2$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 0&0&-6 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ exchange $r_3$ and $r_2$ change sign} $
$$-\left|
\begin{array}{rrr}
1&5&-3\\ 0&3&-1 \\ 0&0 &-6
\end{array}
\right|=18$$
 
Last edited:
karush said:
one more

$\textsf{a. Find the determinants by row reduction in echelon form.}$
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 2&13 &-7
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $-2$ and added to $r_3$} $
$$\left|
\begin{array}{rrr}
1&5&-3\\ 3&-3&3 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ multiplied $r_1$ by $\color{red}{6}$ and added to $r_2$} $ ?
$$\left|
\begin{array}{rrr}
1&5&-3\\ 0&0&-6 \\ 0&3 &-1
\end{array}
\right|$$
$\textsf{ exchange $r_3$ and $r_2$ change sign} $
$$-\left|
\begin{array}{rrr}
1&5&-3\\ 0&3&-1 \\ 0&0 &-6
\end{array}
\right|=18$$

...

$\begin{bmatrix}
1 & 5 &-3 \\
3 & -3 &3 \\
2 & 13 & -7
\end{bmatrix}$

$-2r_1 + r_3 \to r_3$

$\begin{bmatrix}
1 & 5 &-3 \\
3 & -3 &3 \\
0 & 3 & -1
\end{bmatrix}$

$-3r_1 + r_2 \to r_2$

$\begin{bmatrix}
1 & 5 &-3 \\
0 & -18 &12 \\
0 & 3 & -1
\end{bmatrix}$

$\dfrac{1}{6}r_2 + r_3 \to r_3$

$\begin{bmatrix}
1 & 5 &-3 \\
0 & -18 &12 \\
0 & 0 & 1
\end{bmatrix}$

determinant of an upper triangular matrix is the product of the terms in the diagonal ...

$(1)(-18)(1) = -18$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K