Find dissipative function for the non-linear force f=-bv^n

AI Thread Summary
The discussion focuses on determining the dissipative function for the non-linear force f = -bv^n in a Lagrangian framework. It is established that the dissipative function can be expressed as D = - (1/(n+1))bv^(1+n). There is clarification regarding the relationship between the force and the dissipative function, correcting a typo in the initial query. Participants confirm the correctness of the derived dissipative function. The conversation emphasizes the importance of accurately relating force and dissipative functions in nonconservative systems.
mcconnellmelany
Messages
21
Reaction score
5
Homework Statement
For a nonconservative force,
What would be the dissipative function for a force f=-bvⁿ in Lagrangian
(Where v is the velocity)
[#qoute for a nonconservative force f=-bv
The dissipative function is D=-(1/2)bv² ]
Relevant Equations
##\frac{d}{dt}(\frac{\partial L}{\partial \dot x})=\frac{\partial L}{\partial x} - \frac{\partial F}{\partial \dot x}##
For a nonconservative force,
What would be the dissipative function for a force f=-bvⁿ in Lagrangian
(Where v is the velocity)
[#qoute for a nonconservative force f=-bv
The dissipative function is D=-(1/2)bv² ]

Since ##f=\frac{\partial D}{\partial \dot x}## so the dissipative function should be ##D=-\frac{1}{n+1}bv^{1+n}##, isn't it?
 
Last edited:
Physics news on Phys.org
mcconnellmelany said:
Since ##f=\frac{\partial D}{\partial \ddot x}##
Do you mean ##f=\frac{\partial D}{\partial \dot x}## ?
 
haruspex said:
Do you mean ##f=\frac{\partial D}{\partial \dot x}## ?
Hmm! It was a typo.
 
mcconnellmelany said:
Hmm! It was a typo.
Your answer looks right to me.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top