MHB Find f(a+b): $f(x)=\dfrac {2^x+2^{-x}}{2^x-2^{-x}}$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
To find f(a+b) given f(a) = 17/15 and f(b) = -65/63, the function f(x) can be rewritten using the identity f(x) = tanh(x). This leads to the equations tanh(a) = 17/15 and tanh(b) = -65/63. The sum of the hyperbolic tangents can be expressed as tanh(a+b) = (tanh(a) + tanh(b)) / (1 + tanh(a) * tanh(b)). Substituting the known values results in tanh(a+b) = (17/15 - 65/63) / (1 - (17/15)(-65/63)). The final result for f(a+b) can be calculated from this expression.
Albert1
Messages
1,221
Reaction score
0
$f(x)=\dfrac {2^x+2^{-x}}{2^x-2^{-x}},x\in R, x\neq 0$

$if$

$(1)f(a)=\dfrac{17}{15}$

$and$

$(2)f(b)=-\dfrac{65}{63}$

$find :f(a+b)$
 
Mathematics news on Phys.org
Albert said:
$f(x)=\dfrac {2^x+2^{-x}}{2^x-2^{-x}},x\in R, x\neq 0$

$if$

$(1)f(a)=\dfrac{17}{15}$

$and$

$(2)f(b)=-\dfrac{65}{63}$

$find :f(a+b)$

we have $f(a)=\frac {2^a+2^{-a}}{2^a-2^{-a}} = \frac{2^{2a}+1}{2^{2a}-1} = 1 + \frac{2}{2^{2a}-1} = 1 + \frac{2}{15}$
hence $2^{2a}-1 = 15$ or $a = 2$
we have $f(b)=\frac {2^b+2^{-b}}{2^b-2^{-b}} = \frac{1 + 2^{-2b}}{1 - 2^{-2b}} = \frac{-65}{63}$
or
$\frac{1 + 2^{-2b}}{2^{-2b}-1} = \frac{-65}{63}$ giving -2b = 6(same method as for a) or b = -3

so a + b = -1

so $f(a+b) = \frac{2^{-1} + 2^1}{2^{-1} - 2^1} = \frac{-5}{3}$
 
Albert said:
$f(x)=\dfrac {2^x+2^{-x}}{2^x-2^{-x}},x\in R, x\neq 0$

$if$

$(1)f(a)=\dfrac{17}{15}$

$and$

$(2)f(b)=-\dfrac{65}{63}$

$find :f(a+b)$

$f(a)=\dfrac{17}{15}$
$\dfrac {2^a+2^{-a}}{2^a-2^{-a}}=\dfrac{17}{15}$
$\dfrac {2^{2a}+1}{2^{2a}-1}=\dfrac{17}{15}$
$17(2^{2a}-1)=15(2^{2a}+1)$
$17\cdot2^{2a}-17=15\cdot2^2a+15$
$2\cdot2^{2a}=32$
$2^{2a}=16$
$2a=4$
$a=2$

$f(b)=-\dfrac{65}{63}$
$\dfrac {2^b+2^{-b}}{2^b-2^{-b}}=-\dfrac{65}{63}$
$\dfrac {2^{2b}+1}{2^{2b}-1}=-\dfrac{65}{63}$
$65(2^{2b}-1)=-63(2^{2b}+1)$
$65\cdot2^{2b}-65=-63\cdot2^2b-63$
$128\cdot2^{2b}=2$
$2^{2b}=\dfrac{2}{128}$
$2^{2b}=\dfrac{1}{64}$
$2^{2b}=2^{-6}$
$2b=-6$
$b=-3$

$f(a+b)=f(2-3)$
$f(a+b)=f(-1)$
$f(a+b)=\dfrac {2^{-1}+2^{1}}{2^{-1}-2^{1}}$
$f(a+b)=\dfrac {\frac{5}{2}}{-\frac{3}{2}}$
$f(a+b)=-\dfrac {5}{3}$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
981
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K