- #1

- 45

- 1

## Homework Statement

Link: http://i.imgur.com/JSm3Tqt.png

## Homework Equations

##\omega=2\pi t##

Fourier: ## Y(f)=\int ^{\infty}_{-\infty}y(t)\mathrm{exp}(-j\omega t)dt##

Linearity Property: ##ay_1(t)+by_2(t)=aY_1(f)+bY_2(f)##, where a and b are constants

Scaling Property: ##y(at)=\frac{1}{|a|}G(\frac{f}{a})##, where a is constant

## The Attempt at a Solution

From the hint, I think I need to find the Fourier transform of the function for each region:

##(-2\leq t\leq -1)##: ##Y(f)=te^{-j\omega t}+\frac{j}{\omega}(e^{j\omega}-e^{j2\omega})##

##(-1\leq t\leq 1)##: ##Y(f)=\frac{j}{\omega}(e^{-j\omega}-e^{j\omega})##

##(1\leq t\leq 2)##: ##Y(f)=-te^{-j\omega t}+\frac{3j}{\omega}(e^{-j2\omega}-e^{-j\omega})##

Please let me know if you want to see my work.

Why do I need to use the scaling property and how do I use it?