- #1
Captain1024
- 45
- 2
Homework Statement
Link: http://i.imgur.com/JSm3Tqt.png
Homework Equations
##\omega=2\pi t##
Fourier: ## Y(f)=\int ^{\infty}_{-\infty}y(t)\mathrm{exp}(-j\omega t)dt##
Linearity Property: ##ay_1(t)+by_2(t)=aY_1(f)+bY_2(f)##, where a and b are constants
Scaling Property: ##y(at)=\frac{1}{|a|}G(\frac{f}{a})##, where a is constant
The Attempt at a Solution
From the hint, I think I need to find the Fourier transform of the function for each region:
##(-2\leq t\leq -1)##: ##Y(f)=te^{-j\omega t}+\frac{j}{\omega}(e^{j\omega}-e^{j2\omega})##
##(-1\leq t\leq 1)##: ##Y(f)=\frac{j}{\omega}(e^{-j\omega}-e^{j\omega})##
##(1\leq t\leq 2)##: ##Y(f)=-te^{-j\omega t}+\frac{3j}{\omega}(e^{-j2\omega}-e^{-j\omega})##
Please let me know if you want to see my work.
Why do I need to use the scaling property and how do I use it?