Find h in the problem involving a stone thrown upwards

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    equation
AI Thread Summary
The discussion centers on finding the height (h) of a stone thrown upwards, with participants analyzing different sign conventions used in their calculations. Both the original tutor's approach, which considered downward as positive, and the participant's upward-positive convention led to the same result of h = 14.4 m. It is noted that both methods are valid, and neither is superior, as they yield consistent answers. Additionally, there is a suggestion to round the final answer to two significant figures for consistency. The conversation also touches on related calculations involving velocity and distance formulas.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached.
Relevant Equations
kinematics
Was the approach used by the referenced tutor correct?

1729371349877.png



In my understanding, the set up equation ought to be,
##s=-h, u=16## as the stone is being thrown upwards and ##g=-9.8##
giving me,

##-h = 64 - \dfrac{1}{2}×9.8 ×16##

##-h=-14.4##m

##h=14.4##m , or it does not really matter.
 
Last edited:
Physics news on Phys.org
Your tutor used a sign convention where downwards is positive.
You used a sign convention where upwards is positive.
You both solved the problem correctly and got the same answer.
One approach isn't better than the other IMO.

Edit: technically it would be better to round the final answer to 2 significant figures, for consistency with the given data.
 
  • Like
  • Informative
Likes MatinSAR, DeBangis21 and chwala
Steve4Physics said:
Your tutor used a sign convention where downwards is positive.
You used a sign convention where upwards is positive.
You both solved the problem correctly and got the same answer.
One approach isn't better than the other IMO.

Edit: technically it would be better to round the final answer to 2 significant figures, for consistency with the given data.
Not my tutor though ... the term 'tutor' was in reference to the attached downloaded pdf. Cheers though.
 
For part (b) this is clear,

1729374432048.png


but i can also use,

##v=u + at##

##v= 0 + 9.8(4-1.63265) = 23.2## m/s

I made use of ##\dfrac{ds}{dt}##, just incase the question on ##1.63## comes up.

cheers.
 
chwala said:
For part (b) this is clear,

View attachment 352465

but i can also use,

##v=u + at##

##v= 0 + 9.8(4-1.63265) = 23.2## m/s
Or even:
##v = u + at = 16 + (-9.8) \times 4 =-23.2## m/s
Speed = |v| = 23.2 m/s
 
  • Like
Likes MatinSAR and chwala
This is a related problem, allow me to post it here rather than start a new post;

1729376883959.png



The steps are clear;

also we could solve it by simultaneous equation, that is by use of velocity and distance formula (suvat), we shall have the simultaneous,

##34=u+10a##

##480=20u+100a##

##u=14## m/s.

cheers, great day.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top