Find interval and root of polynomial with absolute error less than 1/8

Click For Summary
The discussion focuses on finding the root of the polynomial f(x) = x^3 + 2x + 1 within the interval (-1/2, -1/4) using the Intermediate Value Theorem (IVT) and linearization. The user seeks to ensure that the approximate root p is within an absolute error of less than 1/8 of the actual root x0. They propose using the bisection method to refine the interval based on the sign of the function at the midpoint, adjusting the interval accordingly. Additionally, they mention that the Newton method could provide better convergence for finding the root. The conversation emphasizes the importance of iterative methods to achieve the desired accuracy.
songoku
Messages
2,499
Reaction score
401
Homework Statement
Find an interval of length ##\frac{1}{4}## which contains root of ##x^3+2x+1=0##. Then using that interval, give approximate value of the root with absolute error less than ##\frac{1}{8}##
Relevant Equations
Intermediate Value Theorem (IVT)

Limit (maybe)
By IVT and trial and error, I get the interval to be ##(-\frac{1}{2},-\frac{1}{4})##

I don't know how to do the next part.

Let the actual root of the polynomial be ##x_{0}## and the approximate value is ##p##, we have ##|p-x_{0}|<\frac{1}{8}##

I am not sure how to continue.

Thanks
 
Physics news on Phys.org
https://www.wolframalpha.com/input?i=plot+y=x^3+2x+1&lang=en
1729769732212.png


f(x)=x^3+2x+1
Say [a,b] is the range we choose, linear line between, i.e.,
y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a)
cross the x axis at
x=-\frac{(b-a)f(a)}{f(b)-f(a)}+a
This is a candidate of approximate solution which should be investigated to be within the cited error.

[EDIT]
f(a)<0, f(b)>0
If f(##\frac{a+b}{2}##)<0 we can halve the size of the section [##\frac{a+b}{2}##,b].
If f(##\frac{a+b}{2}##)>0 we can halve the size of the section [a,##\frac{a+b}{2}##].
 
Last edited:
  • Like
Likes songoku and SammyS
anuttarasammyak said:
https://www.wolframalpha.com/input?i=plot+y=x^3+2x+1&lang=en
View attachment 352641

f(x)=x^3+2x+1
Say [a,b] is the range we choose, linear line between, i.e.,
y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a)
cross the x axis at
x=-\frac{(b-a)f(a)}{f(b)-f(a)}+a
This is a candidate of approximate solution which should be investigated to be within the cited error.

[EDIT]
f(a)<0, f(b)>0
If f(##\frac{a+b}{2}##)<0 we can halve the size of the section [##\frac{a+b}{2}##,b].
If f(##\frac{a+b}{2}##)>0 we can halve the size of the section [a,##\frac{a+b}{2}##].
So the idea is to use linearization and then change the interval based on the value of ##x## obtained from linearization until the interval length is < ##\frac{1}{8}##?

Thanks
 
anuttarasammyak said:
f(a)<0, f(b)>0
If f((a+b)/2)<0 we can halve the size of the section [(a+b)/2,b].
If f((a+b)/2)>0 we can halve the size of the section [a,(a+b)/2].
Please forget the part before [EDIT]. Bisection method https://en.wikipedia.org/wiki/Bisection_method applies here. We can get better convergence by Newton method.
 
Last edited:
Thank you very much for the help and explanation anuttarasammyak
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
5K
  • · Replies 22 ·
Replies
22
Views
585
Replies
9
Views
2K
Replies
6
Views
2K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
2K