(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A cone of massMhas a heighthand a base diameterR. Find its moment of inertia about its axis of symmetry

2. Relevant equations

[tex]I=\int R^{2}dm[/tex]

3. The attempt at a solution

I tried starting by findingdm. It's equal to the mass per unit volume, [tex]\frac{M}{\frac{1}{3}\pi R^{2}h}[/tex], times a smalldV. I broke up the cone into small disks of area [itex]\frac{1}{2}\pi x^{2}[/itex] (x being the radius of the disk) and heightdy. I then found x in terms of y through similar triangles: x/y = R/h, so x = (Ry/h). The equation for dV then becomes [tex]dV=\pi\left(\frac{yR}{h}\right)^{2}dy[/tex].dmthen becomes (after simplifying) [tex]dm=\frac{3My^{2}}{h^{3}}dy[/tex], so the whole integral for I is [tex]\int_{0}^{h}R^{2}\frac{3My^{2}}{h^{3}}dy=\frac{3R^{2}M}{h^{3}}\int_{0}^{h}y^{2}dy[/tex], which evaluates to just MR^{2}. And I definitely don't think that's right, because it seems like a cone would have a smaller moment of inertia than a hoop.

So because that method didn't work for some reason, I tried polar coordinates, breaking up the cone into a series of right triangles rotated around the center. The area of the triangle is just .5*R*h, so [tex]dm=\left(\frac{3M}{\pi R^{2}h}\right)\left(\frac{1}{2}Rhd\theta\right)[/tex] and the integral becomes [tex]\int_{0}^{2\pi}R^{2}\frac{3M}{2\pi R}d\theta=\frac{3RM}{2\pi}\int_{0}^{2\pi}d\theta=3RM[/tex] which doesn't seem right at all to me.

I'm sure I screwed up the polar coordinates somehow (I've never actually learned them... I've just kind of seen them here and there and heard a little about how they work) but it seems like my first attempt should have worked... Can someone tell me what I did wrong? Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Find its moment of inertia about its axis of symmetry

**Physics Forums | Science Articles, Homework Help, Discussion**