Find $\tan(2x)$ Given $\cos(x-y)$ and $\sin(x+y)$

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the value of $\tan(2x)$ given the values of $\cos(x-y) = \frac{4}{5}$ and $\sin(x+y) = \frac{5}{13}$, with the constraint that $x$ and $y$ are between 0 and $\frac{\pi}{4}$. The scope includes mathematical reasoning and problem-solving related to trigonometric identities.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the problem and specifies the values of $\cos(x-y)$ and $\sin(x+y)$.
  • Two participants indicate they have solutions, but the details of their approaches are not provided in the posts.

Areas of Agreement / Disagreement

The discussion does not show any consensus or disagreement as the solutions have not been elaborated upon in the posts.

Contextual Notes

The problem may depend on specific trigonometric identities and relationships, which have not been fully explored in the posts.

Who May Find This Useful

This discussion may be of interest to those studying trigonometric identities and problem-solving techniques in mathematics.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
If $\cos(x-y) = \frac{4}{5}$ and $\sin(x+y) = \frac{5}{13}$ and x,y are between 0 and $\frac{\pi}{4}$
then find $\tan (2x)$
 
Physics news on Phys.org
My solution:

\[\\tan(2x) = \tan(x+y+x-y)=\frac{\tan(x+y)+\tan(x-y)}{1-\tan(x+y)\tan(x-y)} \\\\ \cos(x-y)=\frac{4}{5} \rightarrow \sin(x-y)=\frac{3}{5}\rightarrow \tan(x-y)=\frac{3}{4} \\\\ \sin(x+y)=\frac{5}{13}\rightarrow \cos(x+y)=\frac{12}{13}\rightarrow \tan(x+y)=\frac{5}{12} \\\\ \tan(2x)=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\cdot \frac{5}{12}}=\frac{56}{33}\]
 
lfdahl said:
My solution:

\[\\tan(2x) = \tan(x+y+x-y)=\frac{\tan(x+y)+\tan(x-y)}{1-\tan(x+y)\tan(x-y)} \\\\ \cos(x-y)=\frac{4}{5} \rightarrow \sin(x-y)=\frac{3}{5}\rightarrow \tan(x-y)=\frac{3}{4} \\\\ \sin(x+y)=\frac{5}{13}\rightarrow \cos(x+y)=\frac{12}{13}\rightarrow \tan(x+y)=\frac{5}{12} \\\\ \tan(2x)=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\cdot \frac{5}{12}}=\frac{56}{33}\]

Above solution is correct but one solution is missing
 
kaliprasad said:
Above solution is correct but one solution is missing

I´m sorry for the missing answer. Below is (hopefully) the second solution included:

\[\\tan(2x) = \tan(x+y+x-y)=\frac{\tan(x+y)+\tan(x-y)}{1-\tan(x+y)\tan(x-y)} \\\\ \cos(x-y)=\frac{4}{5} \rightarrow \sin(x-y)= \pm \frac{3}{5}\rightarrow \tan(x-y)=\pm \frac{3}{4} \\\\ \sin(x+y)=\frac{5}{13}\rightarrow \cos(x+y)=\frac{12}{13}\rightarrow \tan(x+y)=\frac{5}{12} \\\\ \tan(2x)=\frac{\pm \frac{3}{4}+\frac{5}{12}}{1 \mp \frac{3}{4}\cdot \frac{5}{12}}= \left\{\begin{matrix} \: \: \: \frac{56}{33}\\ \\ -\frac{16}{63} \end{matrix}\right.\]
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K