MHB Find $\tan(2x)$ Given $\cos(x-y)$ and $\sin(x+y)$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
If $\cos(x-y) = \frac{4}{5}$ and $\sin(x+y) = \frac{5}{13}$ and x,y are between 0 and $\frac{\pi}{4}$
then find $\tan (2x)$
 
Mathematics news on Phys.org
My solution:

\[\\tan(2x) = \tan(x+y+x-y)=\frac{\tan(x+y)+\tan(x-y)}{1-\tan(x+y)\tan(x-y)} \\\\ \cos(x-y)=\frac{4}{5} \rightarrow \sin(x-y)=\frac{3}{5}\rightarrow \tan(x-y)=\frac{3}{4} \\\\ \sin(x+y)=\frac{5}{13}\rightarrow \cos(x+y)=\frac{12}{13}\rightarrow \tan(x+y)=\frac{5}{12} \\\\ \tan(2x)=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\cdot \frac{5}{12}}=\frac{56}{33}\]
 
lfdahl said:
My solution:

\[\\tan(2x) = \tan(x+y+x-y)=\frac{\tan(x+y)+\tan(x-y)}{1-\tan(x+y)\tan(x-y)} \\\\ \cos(x-y)=\frac{4}{5} \rightarrow \sin(x-y)=\frac{3}{5}\rightarrow \tan(x-y)=\frac{3}{4} \\\\ \sin(x+y)=\frac{5}{13}\rightarrow \cos(x+y)=\frac{12}{13}\rightarrow \tan(x+y)=\frac{5}{12} \\\\ \tan(2x)=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\cdot \frac{5}{12}}=\frac{56}{33}\]

Above solution is correct but one solution is missing
 
kaliprasad said:
Above solution is correct but one solution is missing

I´m sorry for the missing answer. Below is (hopefully) the second solution included:

\[\\tan(2x) = \tan(x+y+x-y)=\frac{\tan(x+y)+\tan(x-y)}{1-\tan(x+y)\tan(x-y)} \\\\ \cos(x-y)=\frac{4}{5} \rightarrow \sin(x-y)= \pm \frac{3}{5}\rightarrow \tan(x-y)=\pm \frac{3}{4} \\\\ \sin(x+y)=\frac{5}{13}\rightarrow \cos(x+y)=\frac{12}{13}\rightarrow \tan(x+y)=\frac{5}{12} \\\\ \tan(2x)=\frac{\pm \frac{3}{4}+\frac{5}{12}}{1 \mp \frac{3}{4}\cdot \frac{5}{12}}= \left\{\begin{matrix} \: \: \: \frac{56}{33}\\ \\ -\frac{16}{63} \end{matrix}\right.\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top