- #1
- 6
- 0
Homework Statement
Matrix A is 3x3
1 -5 -5
-5 1 5
5 -5 -9
Find basis for corresponding eigenspace when eigenvalue is -4
a) 0 b) 1 0 c) 1 d)1 0
1 0 1 0 0 1
-1 1 , -1 -1 -1 , 1
Homework Equations
(A-lambda I)x=0
The Attempt at a Solution
(A-(-4I)= 5 -5 -5
-5 5 5
5 -5 -5
that matrix times x will be equal to zero
created augmented matrix: 5 -5 -5 0
-5 5 5 0
5 -5 -5 0
find reduced echelon form of augmented matrix:
1 -1 -1 0
0 0 0 0
0 0 0 0
therefore x1=x2+x3
and x2 and x3 are free
vector x= x2+x3
x2
x3
which can be reduced to:
x2*1 + x3* 1
1 0
0 1
For the basis of the eigenspace, I then get:
1 1
1 0
0 , 1
However, the homework question is multiple choice and this is not one of the options. What am I doing wrong?