Find the coordinates of intersection between tangents and given curve

Click For Summary
SUMMARY

The discussion focuses on finding the coordinates of intersection between tangents and the curve defined by the equation y = 4 - x^2. The participants derive the slope of the tangent lines using the derivative dy/dx = -2x and establish the tangent line equation as z - 7 = k(x + 1). They identify the intersection points as (-3, -5) and (1, 3) after solving the quadratic equation x^2 + 2x - 3 = 0. The discussion emphasizes the importance of understanding the significance of algebraic manipulations in solving such problems.

PREREQUISITES
  • Understanding of calculus, specifically derivatives and tangent lines
  • Familiarity with quadratic equations and their solutions
  • Knowledge of algebraic manipulation techniques
  • Ability to interpret geometric concepts related to curves and lines
NEXT STEPS
  • Study the application of derivatives in finding tangent lines to curves
  • Explore the method of solving quadratic equations in detail
  • Learn about the geometric interpretation of intersection points between curves and lines
  • Investigate the significance of algebraic manipulations in calculus problems
USEFUL FOR

Mathematics students, educators, and anyone interested in understanding the intersection of tangents with curves, particularly in the context of calculus and algebra.

chwala
Gold Member
Messages
2,828
Reaction score
421
Homework Statement
Find the co-ordinates of intersection between tangents that pass through the points ##(-1,7)## and the curve ##y=4-x^2##.
Relevant Equations
differentiation
ooops...this was a bit tricky but anyway my approach;

...
##\dfrac{dy}{dx}=-2x##

therefore;

##\dfrac{y-7}{x+1}=-2x##

and given that, ##y=4-x^2## then;

##4-x^2-7=-2x^2-2x##

##x^2+2x-3=0##

it follows that, ##(x_1,y_1)=(-3,-5)## and ##(x_2,y_2)=(1,3)##.

There may be another approach, your insight is welcome guys!.
 
Last edited:
Physics news on Phys.org
tangents that pass through the points (1,−7)
Do they ?

##\ ##
 
BvU said:
Do they ?

##\ ##
just amended question...was a typo ...supposed to be ##(-1,7)##
 
:mad:
 
  • Like
Likes   Reactions: chwala
The way I understand this is: there are two lines tangent to ##y:=4-x^2## that pass through ##(-1,7)##. The task is to find, where these lines intersect with ##y##.

So the tangent is of the form ##z-7 = k(x+1)##, where ##k## is open. We have ##z=y## such that there is exactly one point of intersection (because we want it to be tangent). So ##4-x^2 = kx+ k+7##, i.e, ##x^2 +kx + (k+3) = 0##. This yields the criterion ##k^2 - 4(k+3)=0## for ##k##.
 
BvU said:
:mad:
Aaargh @BvU Long time man! Hope you good...cheers man.
 
  • Like
Likes   Reactions: BvU
nuuskur said:
The way I understand this is: there are two lines tangent to ##y:=4-x^2## that pass through ##(-1,7)##. The task is to find, where these lines intersect with ##y##.

So the tangent is of the form ##z-7 = k(x+1)##, where ##k## is open. We have ##z=y## such that there is exactly one point of intersection (because we want it to be tangent). So ##4-x^2 = kx+ k+7##, i.e, ##x^2 +kx + (k+3) = 0##. This yields the criterion ##k^2 - 4(k+3)=0## for ##k##.
K is open? Do you mean variable?
 
  • Like
Likes   Reactions: nuuskur
WWGD said:
K is open? Do you mean variable?
Yes, of course. That's just the slope of all lines that pass through the point (-1,7).
 
DaveE said:
Yes, of course. That's just the slope of all lines that pass through the point (-1,7).
Still, isn't the slope for any such line described by the derivative at the point? Let me reread the op; I may be missing something.
 
  • #10
WWGD said:
Still, isn't the slope for any such line described by the derivative at the point? Let me reread the op; I may be missing something.
One may use derivative, too. Any line passing through ##(a,b)## is of the form ##y-b = k(x-a)##, where ##k## is the slope of the line.
 
Last edited:
  • #11
nuuskur said:
One may use derivative, too. Any line passing through ##(a,b)## is of the form ##y-b = k(x-a)##, where ##k## is the slope of the line.
...but isn't that the approach that I used? Or how different is your approach?
 
  • #12
Truth be told, I don't really understand what you have done. You write out equalities but don't explain what they are or what you aim for. My crystal ball is not working, either.
 
  • Like
Likes   Reactions: SammyS
  • #13
nuuskur said:
Truth be told, I don't really understand what you have done. You write out equalities but don't explain what they are or what you aim for. My crystal ball is not working, either.
Kindly check my post ##1##. Then let me know if you still don't understand what I did.
 
  • Wow
Likes   Reactions: nuuskur
  • #14
I don't have this back and forth with my students where they patronisingly tell me to re-read their work and "see if I still don't understand it".

This is not the goal. The goal is for You to understand and convincingly show that you have Understood. You may assume that I have read your attempt. It is not convincing.

##\dfrac{y-7}{x+1}=-2x##
I can infer what this means but it is not the same as you explicitly telling what it means.
and given that, ##y=4-x^2## then;
##4-x^2-7=-2x^2-2x##
Again, I understand that you substitute for ##y## in the first equality, but what is the significance of it?

In short, I'm not doubting your ability to make algebraic manipulations. I'm more interested in why you do them.

This exercise is a trivial one, so you might think it redundant to explain things. But you will carry this attitude to solutions for more complicated problems, which is undesirable.
 
Last edited:
  • Like
Likes   Reactions: SammyS and chwala
  • #15
nuuskur said:
I don't have this back and forth with my students where they patronisingly tell me to re-read their work and "see if I still don't understand it".

This is not the goal. The goal is for You to understand and convincingly show that you have Understood. You may assume that I have read your attempt. It is not convincing.
Interesting I may say...I hear you...am not a student either but I always give my students the benefit of doubt...I also can learn from them because I know that I don't know everything.My steps are clear and I fully understand the problem ...thanks for your comments though.
 
  • Wow
Likes   Reactions: SammyS
  • #16
nuuskur said:
I don't have this back and forth with my students where they patronisingly tell me to re-read their work and "see if I still don't understand it".

This is not the goal. The goal is for You to understand and convincingly show that you have Understood. You may assume that I have read your attempt. It is not convincing.I can infer what this means but it is not the same as you explicitly telling what it means.

Again, I understand that you substitute for ##y## in the first equality, but what is the significance of it?

In short, I'm not doubting your ability to make algebraic manipulations. I'm more interested in why you do them.

This exercise is a trivial one, so you might think it redundant to explain things. But you will carry this attitude to solutions for more complicated problems, which is undesirable.
The two straight lines and the curve are intersecting at the point ##(x,y)## that's why i made the substitution.
 

Similar threads

Replies
5
Views
952
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K