MHB Find the diameter of a circle given linear velocity?

AI Thread Summary
To find the diameter of a circular object given its linear velocity, the formula v = ωr is used, where v is linear velocity, ω is angular velocity, and r is the radius. In the example provided, the linear velocity of 19 mph is converted to 1672 ft/min, and the angular velocity for 10 revolutions per minute is calculated as 20π radians/min. The radius can then be determined using the rearranged formula r = v/ω, leading to the diameter being d = 2v/ω. The discussion emphasizes the importance of unit conversion for accurate calculations. Ultimately, the diameter can be derived from these values.
fluffertoes
Messages
16
Reaction score
0
[SOLVED] Find the diameter of a circle given linear velocity?

Hello all! I need help with a certain type of problem. I do not know how I can find the diameter of a circular object given it's linear velocity. Here is an example problem, and I would love any explanation you could give me! Thanks! :))

Leaving the Ferris Wheel, Daniel sees his friend, Jenna, riding the Super Circle Swings. As he watches, she goes around 10 times in one minute. The sign on the ride claims that the swings travel 19mph. What is the diameter of the ride if the sign is correct?
 
Last edited:
Mathematics news on Phys.org
fluffertoes said:
Hello all! I need help with a certain type of problem. I do not know how I can find the diameter of a circular object given it's linear velocity. Here is an example problem, and I would love any explanation you could give me! Thanks! :))

Leaving the Ferris Wheel, Daniel sees his friend, Jenna, riding the Super Circle Swings. As he watches, she goes around 10 times in one minute. The sign on the ride claims that the swings travel 19mph. What is the diameter of the ride if the sign is correct?
Hint: [math]v = \omega r[/math]

How do you find [math]\omega[/math] ? I'd advised changing the 19 mi/h to ft/min.

-Dan
 
topsquark said:
Hint: [math]v = \omega r[/math]

How do you find [math]\omega[/math] ? I'd advised changing the 19 mi/h to ft/min.

-Dan

Oh my, are people ever going to switch to a system, not necessarily the metric system, that doesn't require a factor or divisor of, say, 88? (Wondering)
 
I like Serena said:
Oh my, are people ever going to switch to a system, not necessarily the metric system, that doesn't require a factor or divisor of, say, 88? (Wondering)

I really just don't know what to do...
 
Let's begin by taking the formula Dan provided, and solve for $r$:

$$r=\frac{v}{\omega}$$

Now, we know the radius $r$ is half the diameter $d$:

$$d=\frac{2v}{\omega}$$

We are given:

$$v=19\text{ mph}\cdot\frac{5280\text{ ft}}{1\text{ mi}}\cdot\frac{1\text{ hr}}{60\text{ min}}=1672\,\frac{\text{ft}}{\text{min}}$$

Now we need to turn 10 revolutions per minutes into an angular velocity given in radians (dimensionless) per minute:

$$\omega=10\,\frac{\text{rev}}{\text{min}}\cdot\frac{2\pi}{1\text{ rev}}=20\pi\,\frac{1}{\text{min}}$$

So, plug in these values...what do you get for $d$?
 
I like Serena said:
Oh my, are people ever going to switch to a system, not necessarily the metric system, that doesn't require a factor or divisor of, say, 88? (Wondering)
Hey, you're preaching to the choir. But, given the units, I figure the answer will be in ft.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top