Find the direction and the magnitude of Frictional force

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Force Magnitude
AI Thread Summary
The discussion focuses on calculating the frictional force, which is determined to be 3.96N downward. It highlights that the reaction force is not considered in this scenario because it acts perpendicular to the movement of the block. The conversation emphasizes that only parallel forces are resolved since the block is at rest, leading to a balance of forces. Limiting friction is mentioned as a context where the reaction force would be relevant. The absence of the coefficient of friction further complicates the analysis of normal forces.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached Question 5.
Relevant Equations
Mechanics
1716084035512.png


In my working i have, the attached. My question is Why is the Reaction force not being considered here,

My equations are;

Frictional force = ## 30\cos 50^0 - 20\cos 40^0 = (19.28 - 15.32)N = 3.96N##
The direction will be downwards.

1716084093643.png
 

Attachments

  • 1716084010280.png
    1716084010280.png
    57.5 KB · Views: 58
Physics news on Phys.org
The reaction force is perpendicular to the direction of freedom of movement of the block.
 
Lnewqban said:
The reaction force is perpendicular to the direction of freedom of movement of the block.
Ok a bit confusing...then if we were to talk of Limiting friction that's when the Reaction force comes into play...
like in this example;

1716092015168.png




aaaargh i think okay! It's only the parallel forces being resolved in both scenarios.
 
Last edited:
The key phrase here is "the block... which is at rest".
Meaning all forces acting along the direction of freedom of movement cancel each other.
Not much to do with the normal forces, because the value of the coefficient of friction is not given.


Block pressured against incline.jpg
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top