Find the distance x so that the two frictional forces are equal

  • Thread starter Thread starter Ithilrandir
  • Start date Start date
  • Tags Tags
    Forces
Click For Summary
SUMMARY

The discussion centers on calculating the distance x where two frictional forces are equal in a system involving a sled with normal forces R1 and R2. The equations derived indicate that R1 = R2 = W/2, leading to the relationship x = Hh/W. However, the answer key suggests μh, indicating a misunderstanding in the application of angular acceleration and moments about different pivot points. The participants clarify that taking moments about the center of mass eliminates net moments, which is crucial for accurate calculations.

PREREQUISITES
  • Understanding of normal forces in physics
  • Knowledge of angular acceleration and its implications
  • Familiarity with moment calculations in mechanics
  • Basic principles of friction and its role in motion
NEXT STEPS
  • Study the principles of angular acceleration in dynamic systems
  • Learn about calculating moments about different pivot points
  • Explore the relationship between frictional forces and normal forces
  • Investigate the effects of horizontal acceleration on rotational dynamics
USEFUL FOR

Students and professionals in physics, mechanical engineering, and anyone involved in dynamics and mechanics of materials, particularly those dealing with friction and rotational motion.

Ithilrandir
Messages
82
Reaction score
3
Homework Statement
A rocket-powered high speed sled running on rails employs pivot shoes between the sled and the rails, as shown in the figure. Each shoe has replaceable running pads at the heel and toe. The coefficient of friction between the running pads and the rail is μ. The rate at which the running pad material is worn off during the operation of the rocket sled is proportional to the friction force acting on the rubbing pad. If the shoe pivot point is at a given height h above the rail surface, at what horizontal distance, x, from the vertical centreline between the two rubbing pads should the pivot point P be placed do that the two rubbing pads will wear away at the same rate?

W: that portion of the weight of the rocket sled carried by the shoe in the diagram
H: horizontal component of force at the shoe pivot point
ℓ : total length between centres of the two rubbing pads
Relevant Equations
...
Letting the normal force on the pad on the left be 1 and the one on the right be 2,

Normal force R1 + R2 = W

Since the sled is not rotating, net moment =0,

Taking moment about the right pad,

W(ℓ/2 + x) - Hh - R1ℓ =0

R1 = W/2 + Wx/ℓ - Hh/ℓ

Since the rate of the pads being worn is proportional to the frictional force, for the rate to be the same the frictional force on both sides needs to be the same as well.

R1 = R2 = W/2

Putting this back in the previous equation,

You get Wx/ℓ = Hh/ℓ,
x = Hh/W

However in the answer key the answer is μh. What am I missing in my steps?
 

Attachments

  • IMG_20210216_144917.jpg
    IMG_20210216_144917.jpg
    29 KB · Views: 128
Physics news on Phys.org
It is not a statics question. There is a horizontal acceleration.
If you take moments about a point not on the same horizontal as the mass centre, there is a net moment producing an angular acceleration about the point.
 
haruspex said:
It is not a statics question. There is a horizontal acceleration.
If you take moments about a point not on the same horizontal as the mass centre, there is a net moment producing an angular acceleration about the point.
Does this mean that if I take the pivot at the centre of mass, there would not be any net moment?
 
Ithilrandir said:
Does this mean that if I take the pivot at the centre of mass, there would not be any net moment?
I seemed to have gotten the answer by taking the pivot at the point P. The only thing that is off is that I got a negative answer.
 
Ithilrandir said:
I seemed to have gotten the answer by taking the pivot at the point P. The only thing that is off is that I got a negative answer.
Well, that's progress.
If you cannot resolve it, please post your working.
 
  • Like
Likes   Reactions: Delta2
haruspex said:
Well, that's progress.
If you cannot resolve it, please post your working.

I noticed I had just been careless in my arithmetic and forgot to change the signs when bringing terms from one side to the next. So my answer has no issues.
 
Ithilrandir said:
I noticed I had just been careless in my arithmetic and forgot to change the signs when bringing terms from one side to the next. So my answer has no issues.
Very good.
Do you understand about the angular acceleration?
 
haruspex said:
Very good.
Do you understand about the angular acceleration?
I didn't make use of angular acceleration in my calculations, so no. I just took into account of friction when I calculated the moment about point P.
 
Ithilrandir said:
I didn't make use of angular acceleration in my calculations, so no. I just took into account of friction when I calculated the moment about point P.
Sure, but I am asking if you understand why you need to allow for an angular acceleration if you choose some other axis.
 
  • #10
haruspex said:
Sure, but I am asking if you understand why you need to allow for an angular acceleration if you choose some other axis.
I'm thinking it's because the net movement is from the centre of mass, motions from other points of reference will essentially have an added rotational element.
 
  • #11
Ithilrandir said:
I'm thinking it's because the net movement is from the centre of mass, motions from other points of reference will essentially have an added rotational element.
Yes. E.g. if an object mass m is moving horizontally at velocity v, height y above the ground, then it has angular momentum mvy about an axis below it on the ground.
 
  • Like
Likes   Reactions: Ithilrandir

Similar threads

Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
4K
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
20
Views
2K