- #1
- 54
- 3
- Homework Statement
- See picture.
- Relevant Equations
- Gauss law for polarizaton : ## -Q = \int P dA ## , dA = element of area
Attempt at solution:
a) Since I need help with b) this section can be skipped. Results :
##ρ_{psa} = -Pa ##
##ρ_{psb} = Pb ##
##ρ_{p} = \frac {-1}{R^2} \frac {∂(R^2PR)}{∂R} = -3P ##
b) This is where I am unsure (first time using gauss law for P) so I need some confirmation here:
## \int E ⋅ ds = \frac {Q} {ε_0} = \frac {1} {ε_0} \int -P dA ##
This will become:
## E(R) 4πR^2 = -\frac {1} {ε_0} PR4πR^2 ##
For 0<R<a : E(R) = 0
For a<R<b : ## E(R) = -\frac {1} {ε_0} PR ##
For b<R : E(R) = 0
The problem here is the solution show : For a<R<b : ## E(R) = -\frac {1} {ε_0} P ##
Did I go wrong somewhere or is this a typo in the solutions?