Find the equation of given curve in the form ##e^{3y}=f(x)##

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Curve Form
Click For Summary

Homework Help Overview

The discussion revolves around finding the equation of a given curve in the form \( e^{3y} = f(x) \), specifically through the context of solving a differential equation involving integration.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the integration of both sides of the equation and the steps taken to arrive at the implicit solution. There are mentions of verifying the solution against initial conditions and the differential equation itself.

Discussion Status

Some participants express agreement with the correctness of the original poster's work, while others suggest that more detailed steps could enhance clarity. There is an ongoing exploration of the implications of the derived equation and its verification.

Contextual Notes

The problem is framed as an initial value problem, and participants highlight the importance of checking solutions in the context of differential equations.

chwala
Gold Member
Messages
2,829
Reaction score
425
Homework Statement
See attached
Relevant Equations
Integration
1654985059847.png

For part (a);

$$\int e^{3y} \,dy=\int 3x^2\ln x \,dx$$$$\frac{e^{3y}}{3}=x^3\ln x-\frac{x^3}{3}+k$$$$\frac{e^{3}}{3}=e^3-\frac{e^3}{3}+k$$$$\frac{e^{3y}}{3}=x^3\ln x-\frac{x^3}{3}-\frac{e^3}{3}$$$$e^{3y}=3x^3 \ln x-x^3-e^3$$

You may check my working...i do not have the solution.
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
chwala said:
Homework Statement:: See attached
Relevant Equations:: Integration

View attachment 302689
For part (a);

$$\int e^{3y} \,dy=\int 3x^2\ln x \,dx$$$$\frac{e^{3y}}{3}=x^3\ln x-\frac{x^3}{3}+k$$$$\frac{e^{3}}{3}=e^3-\frac{e^3}{3}+k$$$$\frac{e^{3y}}{3}=x^3\ln x-\frac{x^3}{3}-\frac{e^3}{3}$$$$e^{3y}=3x^3 \ln x-x^3-e^3$$

You may check my working...i do not have the solution.
You can check this for yourself, something you should always do when you solve differential equations. Since this is an initial value problem, checking your solution amounts to doing two things:
  1. Verify that the point (e, 1) satisfies the equation ##e^{3y}=3x^3 \ln x-x^3-e^3 ##.
  2. Verify that for the implicit equation you found satisfies the DE ##\frac{dy}{dx} = \frac{3x^2 \ln(x)}{e^{3y}}##.
 
  • Like
Likes   Reactions: PeroK, Delta2 and chwala
I find your work correct. Only thing you could add more detailed steps is in the passage from first to second line, but yes ok it is just one integration by parts.
 
  • Like
Likes   Reactions: chwala
Mark44 said:
You can check this for yourself, something you should always do when you solve differential equations. Since this is an initial value problem, checking your solution amounts to doing two things:
  1. Verify that the point (e, 1) satisfies the equation ##e^{3y}=3x^3 \ln x-x^3-e^3 ##.
  2. Verify that for the implicit equation you found satisfies the DE ##\frac{dy}{dx} = \frac{3x^2 \ln(x)}{e^{3y}}##.
Thanks @Mark44 ...1. ##e^3=3e^3-e^3-e^3## (thus satisfied).

2.

##3e^{3y}y'=9x^2\ln x +3x^2-3x^2##

##⇒3e^{3y}y'=9x^2\ln x##

##y'=\dfrac{9x^2\ln x}{3e^{3y}}=\dfrac{3x^2\ln x}{e^{3y}}##
 
Something I've said to many of my students when I taught classes on differential equations. I said it in a previous post here, but it bears repeating.
Mark44 said:
You can check this for yourself, something you should always do when you solve differential equations.
 
  • Like
Likes   Reactions: chwala

Similar threads

Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K