Find the equation of the curve given: ##\frac{dy}{dx}=2(kx-1)^5##

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Curve
Click For Summary
SUMMARY

The discussion focuses on finding the equation of the curve defined by the differential equation ##\frac{dy}{dx}=2(kx-1)^5##. The integration leads to the general solution ##y=\dfrac{(kx-1)^6}{3k} +c##. By applying the points (0,1) and (1,8), the value of k is determined to be 3, resulting in the specific equation ##y=\dfrac{(3x-1)^6+8}{9}##. Alternative approaches, including polynomial substitution and trial methods, are also explored, emphasizing the versatility in solving such equations.

PREREQUISITES
  • Understanding of differential equations and integration techniques
  • Familiarity with polynomial equations and their roots
  • Knowledge of calculus concepts, particularly related to curve equations
  • Experience with substitution methods in algebra
NEXT STEPS
  • Explore advanced integration techniques in calculus
  • Study polynomial root-finding methods, including synthetic division
  • Learn about different approaches to solving differential equations
  • Investigate the binomial expansion and its applications in calculus
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus and differential equations, as well as anyone interested in exploring various methods for solving polynomial equations.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
See attached textbook question and solution
Relevant Equations
Integration - Calculus
This is the question...hmmmm it stressed me a little bit.:cool:

1663842315807.png


Find the textbook solution here; no. 6

1663842365825.png


Now my approach to this was as follows;

On integration,

##y=\dfrac{(kx-1)^6}{3k} +c##

on using the point ##(0,1)## and ##(1,8)##, we end up with

##1=\dfrac{1}{3k} +c##
##8=\dfrac{(k-1)^6}{3k} +c##

it follows that,

##8=\dfrac{(k-1)^6}{3k} + \dfrac{3k-1}{3k} ##
...
##(k-1)^6+3k-1-24k=0##

##(k-1)^6-21k-1=0##

##k^6-6k^5+15k^4-20k^3+15k^2-6k+1-21k-1=0##

I let ##P(k)=k^6-6k^5+15k^4-20k^3+15k^2-6k+1-21k-1##

using trial and error method from ##±0, ±1...## i got ##P(3)=0## implying ##k=3## is a factor,

thus substituting on;

##1=\dfrac{1}{3k} +c##

we get;

##1=\dfrac{1}{3×3} +c##

##1=\dfrac{1}{9} +c##

##c=\dfrac{8}{9}##

Therefore;

##y=\dfrac{(3x-1)^6}{3×3} +\dfrac{8}{9}##

##y=\dfrac{(3x-1)^6+8}{9}##

I would be interested if there would be another approach to this question. Cheers guys.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: See attached textbook question and solution
Relevant Equations:: Integration - Calculus

I would be interested if there would be another approach to this question. Cheers guys.
With ##t:=kx-1## and integration you get quickly to ##y=\dfrac{2}{6k}(kx-1)^6+c## with two equations and two unknowns.
 
fresh_42 said:
With ##t:=kx-1## and integration you get quickly to ##y=\dfrac{2}{6k}(kx-1)^6+c## with two equations and two unknowns.
Hi @fresh_42 ...that is the same approach that i used. Maybe i ought to be specific...is there a different way other than using the binomial expansion?
 
chwala said:
Hi @fresh_42 ...that is the same approach that i used. Maybe i ought to be specific...is there a different way other than using the binomial expansion?
Whatever we do, we will have the equation ##21k=(k-1)^6-1.## I did another substitution, ##s:=k-1,## got ##s^6-21s-22=0## where you can read of ##s=-1## immediately. I asked WA for the solution, but you can of course do the long division ##(s^6-21s-22):(s+1)=-22 + s - s^2 + s^3 - s^4 + s^5## and see whether you can guess ##s=2,## or check ##\pm1, \pm 2, \pm 11## as divisors of ##22## and hope that the solution is an integer solution.At least it does not use binomial expansion, only division. But you cannot make the polynomial go away.
 
  • Like
Likes   Reactions: chwala

Similar threads

Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K