Find the exact shaded area of the region in 4 overlapping circles

Click For Summary
SUMMARY

The discussion focuses on calculating the exact shaded area of the region formed by four overlapping circles and understanding the geometry involved. The area of the shaded region is determined to be $$A=2(\pi-2)$$, while the total non-shaded area across all circles is calculated as 8r². Each part of the intersection is proven to be one-quarter the circumference of the circles, with the geometry involving a square formed by the centers of the circles and specific angles derived from the intersections.

PREREQUISITES
  • Understanding of circle geometry and properties
  • Familiarity with trigonometric functions and angles
  • Knowledge of area calculations for circles and triangles
  • Ability to interpret mathematical proofs and equations
NEXT STEPS
  • Study the derivation of the area of circle-circle intersections
  • Learn about the properties of overlapping circles in geometry
  • Explore trigonometric identities related to angles in circles
  • Investigate advanced geometric proofs involving multiple shapes
USEFUL FOR

Mathematicians, geometry enthusiasts, students studying advanced mathematics, and anyone interested in the properties of overlapping circles and area calculations.

Zekes
Messages
4
Reaction score
0
So, say you got 4 circles intersecting this way:

View attachment 9061

Now, I am looking for two things:


  1. A proof that each part of the circle which is in an intersection is 1/4 the size of the whole circle's circumference

  • The exact area of the non-shaded region.

Now, in my search to finding the answer to this, I stumbled upon this Circle-Circle Intersection -- from Wolfram MathWorld. The only problem? I have no idea what this article is trying to say, and how it can help me. I did find the equation to get the area of the shaded region ( it's $$A=2(\pi-2)$$ ) which I can use in Part 2 but I still don't understand how the solution got to there, and how to do Part 1. Please help me in learning what is trying to be said here in simpler terms! Thanks!
 

Attachments

  • YmbI3.png
    YmbI3.png
    9.3 KB · Views: 173
Last edited:
Mathematics news on Phys.org
Hi Zekes.

Let the radius of each circle be $r$; let P, Q, R, S be the centres of the cirlces and O, A, B, C, D the points of intersections marked as follows:

View attachment 9063

Now PQRS is a square with diagonal $2r$ and so the length of each side is $r\sqrt2$, i.e. $|\mathrm{PQ}|=r\sqrt2$. So the “thickness” of each light-blue lens-shaped region of overlap between circles is $(2-\sqrt2)r$. if T is the point of intersection of the line segments AO and PQ, then

$$|\mathrm{PT}|\ =\ r-\frac{2-\sqrt2}2r\ =\ \frac r{\sqrt2}.$$

Hence $\angle\mathrm{APT}\ =\ \arccos\frac1{\sqrt2}\ =\ 45^\circ$; i.e. $\angle\mathrm{APO}=90^\circ$. That is to say, each circular arc drawn from O is one-quarter the circumference of each circle.

Now:

  • area of quadrant APO = $\dfrac{\pi r^2}4$
    ;
  • are of triangle APO = $\dfrac12r^2$
    ;
  • therefore area of each light-blue shaded region = $2\times\left(\dfrac{\pi r^2}4-\dfrac12r^2\right)=\dfrac{(\pi-2)r^2}2$
    ;
  • therefore area of non-shaded region in each circle = $\pi r^2-2\times\dfrac{(\pi-2)r^2}2=2r^2$
    ;
  • therefore total non-shaded area = $4\times2r^2=8r^2$.

Interesting to note that the final answer does not contain $\pi$.
 

Attachments

  • 4Circles.png
    4Circles.png
    9.6 KB · Views: 153
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K