1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Find the explicit formula for the nth term of the sequence?

  1. Apr 3, 2013 #1
    1. The problem statement, all variables and given/known data

    Consider the sequence n1, n2, n3, ... that satisfies the recurrence relation nk = nk-1 / k + 1 for all integers k ≥ 2 with the initial condition that n1 = 1. Find the explicit formula nk for the nth term of the sequence?

    2. The attempt at a solution

    I calculated out the terms for n = 1, n = 2, n = 3 & n = 4 but there is no obvious relation that I can see because of the decimal numbers. For example:

    Starting variable n1 = 1 so..

    n2 = [itex]\frac{1}{3}[/itex] = .333

    n3 = [itex]\frac{.333}{4}[/itex] = .08325

    n4 = [itex]\frac{.08325}{5}[/itex] = .01665

    Any hints on how to calculate the explicit formula for nk?
    Thanks for any info!
  2. jcsd
  3. Apr 3, 2013 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper

    What do you notice about the relationship between the denominators and the index k?
    What relationship do you deduce about the numerators and n-sub-k?
  4. Apr 3, 2013 #3
    Hmm, the denominators are increasing sequentially by 1 more than k.

    As the index goes up the numerator is getting smaller.

    I'll keep playing with the number until something jumps out at me. I don't know where my instructor comes up with these tough problems, but I can do the easy ones in the book :cry:

  5. Apr 3, 2013 #4


    User Avatar
    Science Advisor

    It would have been better NOT to approximate with a decimal

    n3= (1/3)/(3+1)= 1/(3(4))/

    n4= (1/(3(4)))/(4+ 1)= 11/(3(4)(5))

    1/3, 1/(3(4)), 1/(3(4)(5)), should remind you of a factorial.
  6. Apr 3, 2013 #5
    Ah, I never would have noticed with the decimal numbers. I won't make that mistake again. It looks like the factorial starts at 3 so is he equation correct below? I get correct answers with a numerator of 2 but can't figure out how to get the 2? I just guessed it. Thanks for the help!

    nk = [itex]\frac{2}{(n+1)n!}[/itex]

  7. Apr 3, 2013 #6

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    What you wrote means
    [tex] n_k = \frac{n_{k-1}}{k} + 1.[/tex]
    Did you mean that, or did you mean
    [tex] n_k = \frac{n_{k-1}}{k+1} ?[/tex]
    If you mean the latter, USE PARENTHESES, like this: nk = nk-1/(k+1).

    Anyway, do not use limited decimal representations; 1/3 is NOT 0.333, 1/12 is NOT 0.8325 (it is actually .08333333333333333 ....) The errors you get are building up more and more as you increase the number of steps, and using decimals like that serves no useful purpose here.
  8. Apr 3, 2013 #7


    User Avatar
    Homework Helper

    Since you have

    [tex]n_k = \frac{1}{3.4.5...k}[/tex]


    [tex]\frac{1}{k!}=\frac{1}{}=\frac{1}{2}\cdot\frac{1}{3.4.5...k}=\frac{1}{2}\cdot n_k[/tex]

    Does this manipulation make sense so far?

    So finally, what is nk?

    EDIT: Also, you guessed the formula to be


    which I should note is equivalent to


    And also, you're looking for the kth term, not the nth term. Your formula should be in terms of k.

    [tex]n_k = f(k)[/tex]

    So if you're looking for n2 then you plug k=2 into the formula.
    Last edited: Apr 3, 2013
  9. Apr 4, 2013 #8
    Sorry, I am trying to learn how to put the equations in using the correct symbols, so I forgot the parenthesis, which I know totally changes the equation. I meant the later..

    [tex] n_k = \frac{(n_{k-1})}{(k+1)} ?[/tex]

    Last edited: Apr 4, 2013
  10. Apr 4, 2013 #9
    Thanks for all the clarifications. I have been mixing up the terms and it's been hurting my grades.

    so would it be

    [tex]n_k = \frac{2}{(k+1)!}[/tex]

    Thanks. That's what I like about this forums. You can always count on everyone to correct all these errors. I have been learning a lot from them :approve:

  11. Apr 4, 2013 #10


    User Avatar
    Homework Helper

    No. Look back to my derivation. I ended up with

    [tex]\frac{1}{k!}=\frac{1}{2}\cdot n_k[/tex]

    so then

    [tex]n_k = \frac{2}{k!}[/tex]

    Did it make sense to you?
  12. Apr 4, 2013 #11
    Yes I can see how you did all the math to acquire the answer, but how you got the [itex]\frac{1}{2}[/itex] confuses me a little. Is it because the question stated k ≥ 2 so you pulled it out of the factorial? Than you multiply both sides by 2 to isolate the nk.

    Thanks for your patience with me!

  13. Apr 4, 2013 #12


    User Avatar
    Homework Helper

    Sorry for misleading you, but I just wrote down the pattern for myself and noticed I did make a big blunder, you were right, it's

    [tex]n_k = \frac{2}{(k+1)!}[/tex]

    My derivation in the earlier post still follows the same procedure, except that we begin with

    [tex]n_k = \frac{1}{3.4.5...k(k+1)}[/tex]

    So then

    [tex]\frac{1}{(k+1)!} =\frac{1}{} =\frac{1}{2} \frac{1}{3.4.5...k(k+1)} = \frac{1}{2}n_k[/tex]

    Hence we have that

    [tex]n_k = \frac{2}{(k+1)!}[/tex]

    Sorry about that.

    The factor of 1/2 came from the fact that when we noticed the pattern for nk to be

    [tex]n_k = \frac{1}{3.4.5...k(k+1)}[/tex]

    The denominator is nearly

    [tex](k+1)! =[/tex]

    But we're missing the 2, so we put in there! But if we multiplied the denominator by 2, then in order to keep it equal, we need to multiply the numerator by 2 as well:

    [tex]\frac{1}{3.4.5...(k+1)}=\frac{2}{2}\cdot \frac{1}{3.4.5...(k+1)} = \frac{2}{2.3.4...(k+1)}=\frac{2}{(k+1)!}[/tex]

    If the question was instead changed to "for integers [itex]k\geq 1[/itex]" then our initial condition would have to be on n0, so let n0=1, then



    Following this pattern, we can see that kth term will be

    [tex]n_k = \frac{1}{2.3.4...k(k+1)}[/tex]

    Which is simply

    [tex]n_k = \frac{1}{(k+1)!}[/tex]
  14. Apr 4, 2013 #13
    Ah, that's where the two came from. It cancels out the almost factorial :approve:

    Thanks again for everyone's assistance. I like how everyone on here helps you figure out the answer for yourself, which is turn makes it's easier to understand come exam time.

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted