(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex]\lim_{x \rightarrow \infty}[/tex][tex] 2x+1-[/tex][tex]\sqrt{4x^2+5}[/tex]

3. The attempt at a solution

i am wondering if this method that i used is correct. i get the correct answer but i ahaven't see it in the text book or on the net. am i doing something that shouldn't be done?

using the limit laws, i take out 1.

[tex]\lim_{x \rightarrow \infty}[/tex] 1 + [tex]\lim_{x \rightarrow \infty [/tex][tex]2x-\sqrt{4x^2+5}[/tex]

then i rationalize.

.

[tex]\lim_{x \rightarrow \infty[/tex] 1 + [tex]\lim_{x \rightarrow \infty} \frac{4x^2-4x^2-5}{2x+\sqrt{4x^2+5}}[/tex]

1 + [tex]\lim_{x \rightarrow \infty} [/tex][tex]\frac{-5}{2x+x\sqrt{4+\frac{5}{x^2}}}[/tex]

1 + [tex]\lim_{x \rightarrow \infty} \frac{\frac{-5}{x}}{\frac{2x}{x}+\frac{x}{x}\sqrt{4x+\frac{5}{x^2}}}[/tex]

1 + [tex]\frac{0}{4}[/tex]

1+0=1

i get the right answer when i do it for [tex]\lim_{x \rightarrow \infty [/tex][tex]\sqrt{9x^4-3x^2+1} - 3x^2+5[/tex] and these the only two i tried. is this method just lucky for these two or can i keep using it?

also. i seem to be getting the right limit of 1 when x approches postive infinity for [tex]\lim_{x \rightarrow \infty [/tex][tex]\sqrt{9x^2+6x-5} - 3x[/tex] but i get -1 when approches negative infinity and mathematica keeps telling me its +infinity. can someone do provide me with a soloution?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Find the imit of 2x + 1 - sqrt(4x^2 + 5) as x--> infinity

**Physics Forums | Science Articles, Homework Help, Discussion**