Find the initial velocity ##U##

Click For Summary
The discussion focuses on determining the initial velocity of a stone thrown upwards and the relevance of displacement versus total distance traveled. It emphasizes that in kinematic equations, displacement is the key variable, not the total distance. A calculation is presented showing that the time of flight for a stone thrown with an initial velocity of 3 m/s is 0.6 seconds, derived from the equation of motion. The example illustrates that total distance does not affect the calculation of time or initial velocity. The conversation concludes with encouragement for self-study in Mechanics.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached.
Relevant Equations
Mechanics
Now in determining the initial velocity;

in my understanding, if ##s=1.8## then we consider the stone's motion from the top to the ground. Why not consider ##s=3.6##, the total distance traveled by stone from start point ##t=0##? Is it possible to model equations from this point?

The stone when thrown upwards will reach a point where it is instantaneously at rest and then start the descent. In that case, it is clear that ##s=1.8##. I need insight on this very part.

1711750389691.png



1711750420378.png
 
Last edited:
Physics news on Phys.org
chwala said:
Why not consider ##s=3.6##, the total distance traveled by stone from point ##t=0##?
Because in the kinematic equations the relevant variable is the displacement (a vector) not the distance (a scalar).
 
  • Like
Likes chwala and MatinSAR
Thank @kuruman I am self-studying Mechanics. Noted.
 
chwala said:
Thank @kuruman I am self-studying Mechanics. Noted.
Then I will add here a calculation that illustrates the point in post #2.

Problem
A stone is thrown straight up in the air with initial velocity ##v_0=3~##m/s and returns to the point at which it was launched. Find the time time of flight ##T##.

Solution
The height of the stone ##y## at any time ##t## above the point of launch is given by $$y=v_0~t-\frac{1}{2}g~t^2.$$ At the specific time ##t=T## when it returns to the launch point, the height of the stone above ground is zero. With ##t=T## the equation we have $$ 0=v_0~T-\frac{1}{2}g~T^2\implies T(v_0 -\frac{1}{2}g~T)=0.$$ One or the other of the terms in the product on the right must be zero.

A. ##T=0## which says that the stone is at zero height when it is launched, a fact that we already knew and built in the equation. We reject this solution because we are looking for a time after launch, i.e. ##T>0.##

B. ##v_0 -\frac{1}{2}g~T=0 \implies T=\dfrac{2v_0}{g}.## This is the solution that we want.

Answer
##T=\dfrac{2\times 3~(\text{m/s})}{10~(\text{m/s}^2)}=0.6~\text{s}.##

You can see from this example that the total distance traveled up and down does not enter the picture and is not needed. Good luck with your self-study. We are here to help.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
Replies
11
Views
1K
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
23
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
4K