Find the length of the curve C

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Curve Length
Click For Summary
SUMMARY

The discussion focuses on finding the length of the curve defined by the function \( y = \ln\left(\frac{e^x + 1}{e^x - 1}\right) \). The derivative \( \frac{dy}{dx} \) is calculated using the chain rule, resulting in \( \frac{dy}{dx} = -\frac{2e^x}{(e^{2x} - 1)^2} \). The user inquires about the presence of the ± sign in the arc length formula, specifically questioning why the derivative does not yield a positive value. The conclusion reached is that the derivative can indeed be negative, confirming the need for the ± sign in the context of the arc length calculation.

PREREQUISITES
  • Understanding of calculus, specifically differentiation and integration
  • Familiarity with the chain rule in calculus
  • Knowledge of logarithmic functions and their properties
  • Concept of arc length in the context of curve analysis
NEXT STEPS
  • Study the application of the chain rule in more complex functions
  • Explore the derivation and application of the arc length formula in calculus
  • Learn about the properties of logarithmic derivatives
  • Investigate the implications of positive and negative derivatives in curve analysis
USEFUL FOR

Students studying advanced mathematics, particularly those focusing on calculus and curve analysis, as well as educators looking for examples of derivative applications in arc length calculations.

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
Integration
This question is from a Further Maths paper;

1666182203228.png


Part (a) is pretty straight forward...No issue here...one has to use chain rule...

Let ##U=\dfrac{e^x+1}{e^x-1}## to realize ##\dfrac{du}{dx}=\dfrac{-2e^x}{(e^x-1)^2}##

and let
##y=\ln u## on taking derivatives, we shall have ##\dfrac{dy}{du}=\dfrac{e^x-1}{e^x+1}##

therefore,
##\dfrac{dy}{dx}=\dfrac{e^x-1}{e^x+1}×\dfrac{-2e^x}{(e^x-1)^2}=-\dfrac{2e^x}{(e^{2x}-1)^2}##Now my question (reason for posting this problem is on part b). Why do we have ± on the highlighted...i thought we are taking absolute value of ##\dfrac{dy}{dx}## which would be a positive.

i.e Arc length = $$\int_a^b \sqrt{1+\left[f^{'}(x)\right]^2} dx$$

1666182847398.png
Thanks.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: see attached
Relevant Equations:: Integration

This question is from a Further Maths paper;

View attachment 315769

Part (a) is pretty straight forward...No issue here...one has to use chain rule...

Let ##U=\dfrac{e^x+1}{e^x-1}## to realize ##\dfrac{du}{dx}=\dfrac{-2e^x}{(e^x-1)^2}##

and let
##y=\ln u## on taking derivatives, we shall have ##\dfrac{dy}{du}=\dfrac{e^x-1}{e^x+1}##

therefore,
##\dfrac{dy}{dx}=\dfrac{e^x-1}{e^x+1}×\dfrac{-2e^x}{(e^x-1)^2}=\dfrac{-2e^x}{(e^{2x}-1)^2}##Now my question (reason for posting this problem is on part b). Why do we have ± on the highlighted...i thought we are taking absolute value of ##\dfrac{dy}{dx}## which would be a positive.

i.e Arc length = $$\int_a^b \sqrt{1+\left[f^{'}(x)\right]^2} dx$$

View attachment 315771Thanks.
Aaaaargh, I've seen the reason... :cool: ...the sign on the derivative may either be positive or negative ...in our problem the derivative is having a negative sign. i.e ##\dfrac{dy}{dx}=-\dfrac{2e^x}{(e^{2x}-1)^2}##
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K