Find the length of the curve C

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Curve Length
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
see attached
Relevant Equations
Integration
This question is from a Further Maths paper;

1666182203228.png


Part (a) is pretty straight forward...No issue here...one has to use chain rule...

Let ##U=\dfrac{e^x+1}{e^x-1}## to realize ##\dfrac{du}{dx}=\dfrac{-2e^x}{(e^x-1)^2}##

and let
##y=\ln u## on taking derivatives, we shall have ##\dfrac{dy}{du}=\dfrac{e^x-1}{e^x+1}##

therefore,
##\dfrac{dy}{dx}=\dfrac{e^x-1}{e^x+1}×\dfrac{-2e^x}{(e^x-1)^2}=-\dfrac{2e^x}{(e^{2x}-1)^2}##Now my question (reason for posting this problem is on part b). Why do we have ± on the highlighted...i thought we are taking absolute value of ##\dfrac{dy}{dx}## which would be a positive.

i.e Arc length = $$\int_a^b \sqrt{1+\left[f^{'}(x)\right]^2} dx$$

1666182847398.png
Thanks.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: see attached
Relevant Equations:: Integration

This question is from a Further Maths paper;

View attachment 315769

Part (a) is pretty straight forward...No issue here...one has to use chain rule...

Let ##U=\dfrac{e^x+1}{e^x-1}## to realize ##\dfrac{du}{dx}=\dfrac{-2e^x}{(e^x-1)^2}##

and let
##y=\ln u## on taking derivatives, we shall have ##\dfrac{dy}{du}=\dfrac{e^x-1}{e^x+1}##

therefore,
##\dfrac{dy}{dx}=\dfrac{e^x-1}{e^x+1}×\dfrac{-2e^x}{(e^x-1)^2}=\dfrac{-2e^x}{(e^{2x}-1)^2}##Now my question (reason for posting this problem is on part b). Why do we have ± on the highlighted...i thought we are taking absolute value of ##\dfrac{dy}{dx}## which would be a positive.

i.e Arc length = $$\int_a^b \sqrt{1+\left[f^{'}(x)\right]^2} dx$$

View attachment 315771Thanks.
Aaaaargh, I've seen the reason... :cool: ...the sign on the derivative may either be positive or negative ...in our problem the derivative is having a negative sign. i.e ##\dfrac{dy}{dx}=-\dfrac{2e^x}{(e^{2x}-1)^2}##
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top