Find the limit of the expression

Click For Summary
The limit of the expression $$\lim_{n\to\infty} \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}$$ evaluates to 1, contrary to the book's answer of e^2. The expression is of the indeterminate form [1^∞], which can be analyzed using logarithmic properties. Taking the natural logarithm reveals that the logarithm approaches 0, leading to the conclusion that the original limit approaches 1. This has been confirmed by both analytical methods and computational tools like Maple.
franktherabbit
Messages
12
Reaction score
1

Homework Statement


$$\lim_{x\to\infty} \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}$$

Homework Equations


3. The Attempt at a Solution [/B]
I tried
##\lim_{x\to\infty} \left(\frac{n^2+2n+3-2}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=##
##\lim_{x\to\infty} \left(1+\frac{-2}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=##
##\lim_{x\to\infty} \left(1 +\frac{-2}{n^2+2n+3}\right)^{\frac{n^2+2n+3}{-2}\frac{-2}{n^2+2n+3}\frac{2n^2}{n+1}}=##
##e^{\lim_{x\to\infty}\frac{-4n^2}{(n^2+2n+3)(n+1)}}=1##
and i get 1 but i don't think this is correct. My book gives ##e^2## as the solution. What do you think is wrong?
 
Physics news on Phys.org
franktherabbit said:

Homework Statement


$$\lim_{x\to\infty} \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}$$

Homework Equations


3. The Attempt at a Solution [/B]
I tried
##\lim_{x\to\infty} \left(\frac{n^2+2n+3-2}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=##
##\lim_{x\to\infty} \left(1+\frac{-2}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=##
##\lim_{x\to\infty} \left(1 +\frac{-2}{n^2+2n+3}\right)^{\frac{n^2+2n+3}{-2}\frac{-2}{n^2+2n+3}\frac{2n^2}{n+1}}=##
##e^{\lim_{x\to\infty}\frac{-4n^2}{(n^2+2n+3)(n+1)}}=1##
and i get 1 but i don't think this is correct. My book gives ##e^2## as the solution. What do you think is wrong?
Your limit is of the indeterminate form ##[1^{\infty}]##. The usual way to deal with this type of problem is to let ##u = \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}##, and then take the natural log of both sides. Then take the limit, keeping in mind that you can usually switch the order of the limit and ln operations.
 
Mark44 said:
Your limit is of the indeterminate form ##[1^{\infty}]##. The usual way to deal with this type of problem is to let ##u = \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}##, and then take the natural log of both sides. Then take the limit, keeping in mind that you can usually switch the order of the limit and ln operations.
So, ##\ln u=\ln \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}##
##\ln u=\frac{2n^2}{n+1}\ln \left(\frac{n^2+2n+1}{n^2+2n+3}\right)##
##\lim_{n\to\infty}\ln u=\lim_{n\to\infty}\frac{2n^2}{n+1}\ln \left(\frac{n^2+2n+1}{n^2+2n+3}\right)##
##\lim_{n\to\infty}\ln u=\lim_{n\to\infty}\frac{2n^2}{n+1}\ln \left(\lim_{n\to\infty}\frac{n^2+2n+1}{n^2+2n+3}\right)##
Is this what you meant? I still get infinity at the first part, how to deal with this?
 
franktherabbit said:
So, ##\ln u=\ln \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}##
##\ln u=\frac{2n^2}{n+1}\ln \left(\frac{n^2+2n+1}{n^2+2n+3}\right)##
##\lim_{n\to\infty}\ln u=\lim_{n\to\infty}\frac{2n^2}{n+1}\ln \left(\frac{n^2+2n+1}{n^2+2n+3}\right)##
##\lim_{n\to\infty}\ln u=\lim_{n\to\infty}\frac{2n^2}{n+1}\ln \left(\lim_{n\to\infty}\frac{n^2+2n+1}{n^2+2n+3}\right)##
Is this what you meant? I still get infinity at the first part, how to deal with this?
The first two steps look OK, but not after that. In the 2nd equation, write the righthand side as ##\frac{\ln \left(\frac{n^2 + 2n + 1}{n^2 + 2n + 3}\right)}{\frac{n + 1}{2n^2}}##. This is of the indeterminate form ##[\frac 0 0 ]##, so L'Hopital's Rule applies.
 
franktherabbit said:

Homework Statement


$$\lim_{x\to\infty} \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}$$

Homework Equations


3. The Attempt at a Solution [/B]
I tried
##\lim_{x\to\infty} \left(\frac{n^2+2n+3-2}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=##
##\lim_{x\to\infty} \left(1+\frac{-2}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=##
##\lim_{x\to\infty} \left(1 +\frac{-2}{n^2+2n+3}\right)^{\frac{n^2+2n+3}{-2}\frac{-2}{n^2+2n+3}\frac{2n^2}{n+1}}=##
##e^{\lim_{x\to\infty}\frac{-4n^2}{(n^2+2n+3)(n+1)}}=1##
and i get 1 but i don't think this is correct. My book gives ##e^2## as the solution. What do you think is wrong?

Your result is correct:
$$\lim_{n \to \infty} \left(\frac{n^2+2n+1}{n^2+2n+3}\right)^{\frac{2n^2}{n+1}}=1$$
Note: the limit is for ##n \to \infty##, not some mythical ##x## going to ##\infty##.

This is easy to check:
$$ \ln \frac{n^2+2n+1}{n^2+2n+3} = -\frac{2}{n^2} + O\left(\frac{1}{n^3}\right), $$
so
$$\frac{2n^2}{n+1} \ln \frac{n^2+2n+1}{n^2+2n+3} = -\frac{4}{n} + O \left( \frac{1}{n^2} \right) \to 0.$$
Since the logarithm goes to 0 the function itself goes to 1.

Also: when the problem is submitted to Maple, the limit is given as 1.
 
  • Like
Likes franktherabbit
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
5
Views
2K
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
Replies
14
Views
2K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
13
Views
2K