- #1
DottZakapa
- 239
- 17
- Homework Statement
- using ratio test verify if converges
- Relevant Equations
- convergence tests
## \sum_{n=0}^\infty \frac {(2n)!}{(n!)^2} ##
##\lim_{n \rightarrow +\infty} {\frac {a_{n+1}} {a_n}}##
that becomes
##\lim_{n \rightarrow +\infty} {\frac { \frac {(2(n+1))!}{((n+1)!)^2}} { \frac {(2n)!}{(n!)^2}}}##
##\lim_{n \rightarrow +\infty} \frac {(2(n+1))!(n!)^2}{((n+1)!)^2(2n)!}##
##\lim_{n \rightarrow +\infty} \frac {(2n+2))!(n!)(n!)}{(n+1)!(n+1)!(2n)!}##
then i don't know what else i can do
##\lim_{n \rightarrow +\infty} {\frac {a_{n+1}} {a_n}}##
that becomes
##\lim_{n \rightarrow +\infty} {\frac { \frac {(2(n+1))!}{((n+1)!)^2}} { \frac {(2n)!}{(n!)^2}}}##
##\lim_{n \rightarrow +\infty} \frac {(2(n+1))!(n!)^2}{((n+1)!)^2(2n)!}##
##\lim_{n \rightarrow +\infty} \frac {(2n+2))!(n!)(n!)}{(n+1)!(n+1)!(2n)!}##
then i don't know what else i can do
Last edited by a moderator: