- #1
- 983
- 22
Homework Statement
Find the minimum value of the area of the region under the curve ## y=4x - x^3 ## from ##x=a## to ##x=a+1##, for all ##a>0##. This problem is from Stewart's Calculus
Homework Equations
Finding the area under the curve...
The Attempt at a Solution
I can set up the equation for the area as
$$A = \int_a^{a+1} (4x-x^3) \; dx $$ Solving this, we get,
$$ A = (a+1)^2 \left[ 2 - \frac{(a+1)^2}{4} \right ] $$ And I need to maximize this function. I can plug ##\alpha = (a+1)^2 ## and the area becomes ##A = \alpha (2 - \frac{\alpha}{4}) ##. But this looks like an inverted parabola and it would have a maxima and a minima of zero area. Does that make sense ?